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3.1 the Cell and the Induced transmembrane Voltage

From the electrical point of view, the cell can roughly be described as an electrolyte (the cytoplasm) 
 surrounded by an electrically insulating shell (the plasma membrane). Physiologically, the surroundings 
of the cell also resemble an electrolyte quite closely. Under such conditions, when a cell is exposed to an 
external electric field, the electric field in its very vicinity concentrates within the membrane, which thus 
shields the cytoplasm from the exposure (this is the reason why the internal structure of the cell is not 
too important, except for very short pulses and very high field frequencies discussed in Section 3.2.4). 
The concentration of the electric field inside the membrane results in an electric potential difference 
across it, termed the induced transmembrane voltage, which superimposes onto the resting transmem-
brane voltage typically present under physiological conditions. As the electric field vanishes, so does 
the induced component of transmembrane voltage. This voltage affects the functioning of voltage-gated 
membrane channels, initiates the action potentials, stimulates cardiac cells, and when sufficiently large, 
it can also lead to cell membrane electroporation (Bedlack et al. 1994, Cheng et al. 1999, Neumann et al. 
1999, Teissié et al. 1999, Burnett et al. 2003, Sharma and Tung 2004, Huang et al. 2006).

With rapidly time-varying electric fields, such as waves with frequencies in the megahertz range 
or higher, or electric pulses with durations in the submicrosecond range, both the membrane and its 
surroundings have to be treated as materials with both a nonzero electric conductivity and a nonzero 
dielectric permittivity.
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From the geometrical point of view, the cell can be characterized as a geometric body (the cytoplasm) 
surrounded by a shell of uniform thickness (the membrane). For a suspended cell, the simplest model 
is a sphere surrounded by a spherical shell. For augmented generality, the sphere can be replaced by 
a spheroid (or an ellipsoid), but in this case, the requirement of uniform thickness complicates the 
description of the shell substantially. If its inner surface is a spheroid or an ellipsoid, its outer surface 
lacks a simple geometrical characterization, and vice versa. Still, in the steady state, this does not affect 
the induced transmembrane voltage, which can still be determined analytically.

Spheres, spheroids, and ellipsoids may be reasonable models for suspended cells, but not for cells in 
tissues. No simple geometrical body can model a typical cell in a tissue, and furthermore every cell gen-
erally differs in its shape from the rest. With irregular geometries and/or with cells close to each other, 
the induced voltage cannot be determined analytically, and thus cannot be formulated as an explicit 
function. This deprives us of some of the insight available from explicit expressions, but using modern 
computers and numerical methods, the voltage induced on each particular irregular cell can still be 
determined quite accurately.

An alternative to both analytical and numerical determination of the induced transmembrane  voltage 
is the experimental approach, which can be performed invasively using microelectrodes, or noninva-
sively by loading the cells with a potentiometric dye and measuring its fluorescence.

In Sections 3.2 through 3.4 we focus separately on the analytical derivation of the induced transmem-
brane voltage for the cells with simple shapes, numerical computation for the cells for which the analyti-
cal approach fails, and noninvasive experimental determination by means of potentiometric dyes.

3.2 analytical Derivation

In this section, we present the course of derivation of the transmembrane voltage induced on a spherical 
cell placed into a homogeneous electric field. The reasons for including a detailed derivation, and not 
only a sketch of the essential steps, are the frequent requests (from both researchers and students) for a 
handout containing such a derivation, and the lack of readily available sources containing such a deriva-
tion (which might also explain these requests). Readers who are not interested in the technical details 
can skip to the final result, which is given by Equation 3.18, and continue reading from that point on.

3.2.1 Laplace’s Equation

Transmembrane voltage is defined as the difference between the values of the electric potential on both 
sides of the membrane. The derivation of the induced component of this voltage is based on solving the 
equation

 ∇ + ∂
∂







∇






=σ ε
t

x y z tΨ( , , , ) 0  (3.1)

which describes the spatial and temporal distribution of the electric potential. For the steady-state situa-
tion, in which the time derivatives are zero, Equation 3.1 simplifies into the well-known Laplace’s equation

 ∇⋅ ∇ =Ψ( , , )x y z 0  (3.2)

Solving this equation in a particular coordinate system gives the mathematical solution for the steady-
state spatial distribution of Ψ in systems of objects that can be described in such a coordinate system. 
The mathematical solution is typically a rather large set of functions containing a number of arbitrary 
constants. By applying physically realistic boundary conditions, the number of functions in this set is 
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reduced, and the values of the constants are determined, yielding the physical solution that describes 
the actual spatial distribution of Ψ in the given system. The induced transmembrane voltage is then 
calculated as the difference between the electric potentials on both sides of the membrane.

In the following section, we illustrate this principle by solving Laplace’s equation in spherical coordi-
nates, thereby obtaining the description of Ψ in and around a spherical cell.

3.2.2 Spherical Cells

Although biological cells are not perfect spheres, in theoretical treatments they are often considered as 
such: a spherical interior (the cytoplasm) surrounded by a concentric spherical shell of uniform thick-
ness (the membrane). For certain types of cells, and particularly for cells in suspensions, this is also a 
reasonable approximation.

To determine the spatial distribution of the electric potential in and around a spherical cell placed into 
a homogeneous electric field, we write Laplace’s equation in the spherical coordinate system (Figure 3.1):

 ∇⋅ ∇ = ∂
∂

∂
∂







+ ∂
∂
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r r
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2 ))
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∂
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2

2
Ψ r  (3.3)

We align the center of the cell with the origin of the system and orient its coordinates so that the direc-
tion of the external field is parallel to the coordinate line traced by r for θ = 0°, φ = 0°, as shown in Figure 
3.1. This yields a symmetry with respect to φ, in the sense that any coordinate circle traced by φ for 
(r = constant, θ = constant) is everywhere perpendicular to the field, and consequently ∂Ψ/∂φ = 0.

Thus, for the treated case, we have Ψ(r, θ, φ) = Ψ(r, θ), and Equation 3.3 simplifies into
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FIGuRE 3.1 The spherical coordinate system and the orientation of the external field with respect to this system 
as used here in solving Laplace’s equation for a spherical cell. The center of the cell is aligned with the origin of the 
system.
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where we have applied the chain rule for derivatives. We now perform the separation of variables: we 
write the function Ψ as a product of two functions of a single variable

 Ψ( , ) ( ) ( )r G r Hθ θ=  (3.5)

and insert this form into Equation 3.4, obtaining

 H G r
r r

G r
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G r
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2
2
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= 0  (3.6)

Dividing both sides by G(r)H(θ)/r2, writing ∂G/∂r = G′(r), ∂H/∂θ = H′(θ), and transferring the functions 
of θ to the right-hand side of the equation, we get

 r G r rG r
G r

H H
H

2 2′′ + ′ = − ′′ + ′( ) ( )
( )

( ) ctg( ) ( )
( )

θ θ θ
θ

 (3.7)

The left-hand side contains only functions of r, and is thus independent of the value of θ. Similarly, the 
right-hand side contains only functions of θ, and is thus independent of the value of r. Since according 
to Equation 3.7 the two sides are equal, it follows that they are independent of both r and θ, and must 
thus be equal to a certain constant. Denoting this constant by K, we thus get a system of two ordinary 
differential equations of second order
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The general solution of the first equation in Equation 3.8 is
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 (3.9)

where C1 and C2 are arbitrary constants.
We now apply the first physically realistic boundary condition: as the distance from the cell increases, 

the distortion of the field by the cell decreases, and the electric field asymptotically approaches homo-
geneity, i.e., the state in which Ψ(r, 0) is directly proportional to r. Since H(θ) is not a function of r, this 
implies that G(r) is directly proportional to r, and in Equation 3.9 this only occurs for K = 2, where

 G r C r C
r

( ) = +1
2
2  (3.10)

Since the value of K is the same in both differential equations in Equation 3.8, we can insert K = 2 into 
the second equation and solve it in this more specific form, obtaining
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 H C C( ) cos cos log cos
cos

θ θ θ θ
θ

= + − +
−







3 4 1 1

1
 (3.11)

where C3 and C4 are arbitrary constants.
Accounting for the physically realistic boundary condition that Ψ(r, θ) is finite for all finite r and θ, 

it follows that C4 = 0, since the term inside the parentheses in Equation 3.11 has singularities at θ = 0° 
and θ = 180°. Therefore,

 H C( ) cosθ θ= 3  (3.12)

Joining Equation 3.10 and Equation 3.12 according to Equation 3.5, we get

 Ψ( , ) cosr Ar B
r

θ θ= +



2  (3.13a)

where A and B are arbitrary constants. This is the general physical solution for Ψ(r, θ) in a system con-
sisting of a sphere, an arbitrary number of concentric spherical shells surrounding it, and the  (infinite) 
space surrounding them, provided that the sphere and its shells are the only objects distorting the 
homogeneity of the electric field.

To come from the general physical solution to the specific one, in which also the constants A and B 
are determined, and thus the electric potential is fully described, we must now account for the particu-
lar geometrical and electrical properties of the system under our consideration. Our system consists of 
three regions: the cell interior (cytoplasm), the cell membrane, and the exterior, which differ in these 
properties, and hence also the values of A and B are in general different for each of these regions. Thus, 
we write
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r A r B r r RΨe e e
2

 (3.13b)

where R is the cell radius and d is the membrane thickness.
We now proceed with applying the boundary conditions to determine the six constants in 

(Equation 3.13b). Since the actual Ψ is finite at r = 0, it follows that Bi = 0. Requiring once again the field 
homogeneity far from the cell, this time writing explicitly the electric potential in a homogeneous field E,

 Ψ( , ) cosr Erθ θ= −  (3.14)

we see that Ae = –E.
The remaining four constants are determined by applying the continuity of the electric potential and 

the electric current density at the two interfaces between the regions.

 Ψ Ψi m( , ) ( , )R d R d− = −θ θ  (3.15a)
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 Ψ Ψm e( , ) ( , )R Rθ θ=  (3.15b)
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where σi, σm, and σe denote the electric conductivities of the cytoplasm, the membrane, and the 
exterior, respectively. Inserting the explicit forms of Ψi, Ψm, and Ψe as given by (Equation 3.13b) into 
(Equations 3.15a through d), applying the already determined values Bi = 0 and Ae = –E, and treating 
the three conductivities as known constants, we obtain a system of four equations with four unknown 
constants (Ai, Am, Bm, and Be). Upon solving this system, we get
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Inserting the expressions for Am and Bm into Ψm as given by (Equation 3.13b), the induced transmem-
brane voltage can now be expressed as

 ∆ = − − =Ψ Ψ Ψm m m S  
( , ) ( , ) cosR d R f ERθ θ θ  (3.17a)

where
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 (3.17b)

By applying a simplifying assumption that the membrane is a pure insulator, σm = 0, the function fS 
turns into a constant, fS = 3/2, and we obtain the well-known formula often referred to as the (steady-
state) Schwan’s equation:
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 ∆ =Ψm
3
2

ERcosθ  (3.18)

This formula tells that the induced transmembrane voltage is proportional to the applied electric field 
and to the cell radius. Furthermore, it has extremal values at the points where the field is perpendicular 
to the membrane, i.e., at θ = 0° and θ = 180° (the “poles” of the cell), and in-between these poles it varies 
proportionally to the cosine of θ (see Figure 3.2, dashed).

Equation 3.18 describes the steady-state situation, which is typically established several microseconds 
after the onset of the electric field. With exposures to a DC field lasting hundreds of microseconds or 
more, this formula can safely be applied to yield the maximal, steady-state value of the induced trans-
membrane voltage. To describe the transient behavior during the initial microseconds, in addition to 
the electric conductivities one also has to account for the dielectric permittivity of the membrane, εm. 
Such a derivation, which is a slight extension of the derivation presented above (Pauly and Schwan 1959), 
yields the first-order Schwan’s equation that reads

 ∆ = −( )−Ψm
/e m3

2
1ER tcosθ τ  (3.19a)

where τm is the time constant of the membrane charging,

 τ ε
σ σ σ σ σm

m

i e i e m/
=

+( ) +
R

d R2 2( )
 (3.19b)

In certain experiments in vitro, where artificial extracellular media with conductivities substantially 
lower than physiological are used, the factor 3/2 is an oversimplification, and the more precise form given 
by Equation 3.17 must be used, as discussed in detail in Kotnik et al. (1997). But generally, the formulae 
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FIGuRE 3.2 Normalized steady-state ΔΨm as a function of the polar angle θ for spheroidal cells with the axis of 
rotational symmetry (ARS) aligned with the direction of the field. Solid: a prolate spheroidal cell with R2 = 0.2 × R1. 
Dashed: a spherical cell, R2 = R1 = R. Dotted: an oblate spheroidal cell with R2 = 5 × R1.
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Equation 3.18 and Equation 3.19 are applicable to exposures to sine (AC) electric fields with frequencies 
below 1 MHz, and to rectangular electric pulses longer than 1 μs.

To determine the voltage induced by even higher field frequencies or even shorter pulses, the dielec-
tric permittivities of the electrolytes also have to be accounted for. This leads to a further generalization 
of Equation 3.17 and/or Equation 3.19 to a second-order model (Grosse and Schwan 1992, Kotnik et al. 
1998, Kotnik and Miklavčič 2000a), and the results it yields will be outlined in Section 3.2.4.

3.2.3 Spheroidal, Ellipsoidal, and Cylindrical Cells

Another direction of generalization is to assume a cell shape more general than that of a sphere. 
The most straightforward generalization is to a spheroid (a geometrical body obtained by rotating an 
ellipse around one of its radii, so that one of its orthogonal projections is a sphere, and the other two are 
the same ellipse) and further to an ellipsoid (a geometrical body in which each of its three orthogonal 
projections is a different ellipse). To obtain the analogues of Schwan’s equation for such cells, one solves 
Laplace’s equation in spheroidal and ellipsoidal coordinates, performing the same steps as in the solu-
tion in spherical coordinates described in detail in Section 3.2.2. A detailed description of the deriva-
tion in prolate and oblate spheroidal coordinates is given in Kotnik and Miklavčič (2000b), Gimsa and 
Wachner (2001), and Valič et al. (2003), and in analogy to Equation 3.18, for an oblate spheroid with the 
ARS aligned with the field it yields
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and for a prolate spheroid with the ARS aligned with the field
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 (3.21)

where R1 and R2 are the radii of the spheroid in the directions parallel and perpendicular to the field, 
respectively (see also Figure 3.2).

Besides the fact that the expressions obtained for Ψ are somewhat more intricate than the one in 
spherical coordinates, the generalization of the shape from spherical to spheroidal invokes two addi-
tional complications outlined in the next two paragraphs.

A description of a cell is geometrically realistic if the thickness of its membrane is uniform. This is 
the case if the membrane represents the space between two concentric spheres, but not two confocal 
spheroids or ellipsoids. As a result, the thickness of the membrane modeled in spheroidal or ellipsoi-
dal coordinates is necessarily nonuniform. By solving Laplace’s equation in these coordinates, we thus 
obtain the spatial distribution of the electric potential in a nonrealistic setting. However, under the 
assumption that the membrane conductivity is zero, the induced transmembrane voltage obtained in 
this manner is still realistic. Namely, the shielding of the cytoplasm is then complete, and hence the 
electric potential everywhere inside the cytoplasm is constant. Therefore, the geometry of the inner 
surface of the membrane does not affect the potential distribution outside the cell, which is the same as 
if the cell would be a homogeneous nonconductive body of the same shape. A more rigorous discussion 
of the validity of this approach can be found in Kotnik and Miklavčič (2000b). Figure 3.2 compares the 
transmembrane voltage induced on two spheroids with the ARS aligned with the direction of the field, 
and that induced on a sphere.
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For nonspherical cells, it is generally more revealing to express ΔΨm as a function of the arc length than 
as a function of the angle θ (for a sphere, the two quantities are directly proportional). For uniformity, the 
normalized version of the arc length is used, denoted by p and increasing from 0 to 1 equidistantly along 
the arc of the membrane. This is illustrated in Figure 3.3 for the cells for which ΔΨm(θ) is shown in Figure 
3.2, and all the plots of ΔΨm henceforth will be presented in this manner.

Typically, θ(p) cannot be expressed by an elementary function, and ΔΨm(p) has to be determined by 
numerical mapping. In analytical treatment of ΔΨm in regular cell shapes for which such a treatment 
is possible, this mapping can be performed to arbitrary accuracy, but the process is somewhat tedious. 
In contrast, when ΔΨm is computed numerically (see Section 3.3), the accuracy is limited by the size of 
the mesh employed, but the arc length is readily determined by the software, and the plots of ΔΨm(p) are 
easy to generate.

Another complication caused by generalizing the cell shape from a sphere to a spheroid or an ellipsoid 
is that the induced voltage now also becomes dependent on the orientation of the cell with respect to 
the electric field. To deal with this, one decomposes the field vector into the components parallel to the 
axes of the spheroid or the ellipsoid, and writes the induced voltage as a corresponding linear combina-
tion of the voltages induced for each of the three coaxial orientations (Gimsa and Wachner 2001, Valič 
et al. 2003). Figures 3.4 and 3.5 show the effect of rotation of two different spheroids with respect to the 
direction of the field.

An analytical solution for ΔΨm is also attainable for circular cylinders with the axis oriented perpen-
dicularly to the external field, and is given by

 ∆ =Ψm 2ERcosθ  (3.22)

This is a suitable approximation for elongated cellular structures such as muscle cells and axons of nerve 
cells, provided that the field is roughly perpendicular to their direction.
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FIGuRE 3.3 Normalized steady-state ΔΨm as a function of the normalized arc length p for spheroidal cells with 
the ARS aligned with the direction of the field. Solid: a prolate spheroidal cell with R2 = 0.2 × R1. Dashed: a spherical 
cell, R2 = R1 = R. Dotted: an oblate spheroidal cell with R2 = 5 × R1.
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3.2.4 High Frequencies and Very Short Pulses

The time constant of the membrane charging (τm) given by (Equation 3.19b) implies that there is a delay 
between the time courses of the external field and the voltage induced by this field. As mentioned above, 
τm (and thus the delay) is somewhat below a microsecond under physiological conditions, but can be 
larger when cells are suspended in a low-conductivity medium. For alternating (AC) fields with the oscil-
lation period much longer than τm, as well as with rectangular pulses much longer than τm, the amplitude 
of the induced voltage is very close to the steady-state value given by Equation 3.18. However, for AC 
fields with the period comparable or shorter than τm, as well as for rectangular pulses shorter than τm, 
the amplitude of the induced voltage starts to decrease.

To illustrate how the amplitude of the induced transmembrane voltage gets attenuated as the fre-
quency of the AC field increases, we plot the normalized amplitude of the induced voltage as a function 
of the field frequency. For a spherical cell, the plot obtained is shown in Figure 3.6. The low-frequency 
plateau and the downward slope that follows are both described by the first-order Schwan’s equation, 
but the high-frequency plateau is only described by the second-order model (Grosse and Schwan 1992, 
Kotnik et al. 1998, Kotnik and Miklavčič 2000a), in which all electric conductivities and dielectric per-
mittivities have nonzero values.

With field frequencies approaching the GHz range, or with pulse durations in the nanosecond range, 
the attenuation of the voltage induced on the cell plasma membrane becomes so pronounced that this 
voltage becomes comparable to the voltage induced on organelle membranes in the cell interior. In cer-
tain circumstances, particularly if the organelle interior is electrically more conductive than the cytosol, 
or if the organelle membrane has a lower dielectric permittivity than the cell membrane, the voltage 
induced on the membrane of this organelle can temporarily even exceed the voltage induced on the 
plasma membrane (Kotnik and Miklavčič 2006). In principle, this could provide a theoretical explana-
tion for a number of recent reports that very short and intense electric pulses (tens of ns, millions or tens 
of millions of V/m) can also induce electroporation of organelle membranes (Schoenbach et al. 2001, 
Beebe et al. 2003, Tekle et al. 2005).
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FIGuRE 3.6 The amplitude of normalized ΔΨm as a function of the frequency of the AC field. The dashed curve 
shows the first-order Schwan’s equation, and the solid one the second-order Schwan’s equation. Note that both axes 
are logarithmic.
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3.3 Numerical Computation

Realistic cells can deviate considerably from regular shapes considered in Section 3.2. Moreover, in 
actual situations, cells are rarely isolated, and when sufficiently close to each other, the mutual distor-
tion of the field they cause cannot be neglected. Often, the cells are even in direct contact, forming two-
dimensional (monolayers attached to the bottom of a dish) or three-dimensional structures (tissues), 
and they can even be interconnected by structures such as gap junctions. None of these cases allows for 
analytical derivation of the induced transmembrane voltage (ΔΨm), while employing analytical solu-
tions for spherical, spheroidal, or cylindrical cells as approximations can lead to rather large errors. In 
practice, there are two approaches for obtaining accurate estimates of ΔΨm on irregularly shaped cells: 
numerical computation and experimental determination. Here, we focus on the numerical methods, 
while the experimental approach will be the subject of Section 3.4.

3.3.1 Computational Methods

Numerical computation of ΔΨm is generally performed in several steps. First, the continuous geometry 
of the model and/or the differential equations describing the electric or electromagnetic field are trans-
formed into their discrete counterparts. Next, these equations are solved either directly or iteratively 
until adequate convergence is reached. Finally, the electric potential on both sides of the membrane is 
extracted from the computed data, and ΔΨm is computed as their difference. Elementary methods, such 
as solving a linear system of equations, are mostly inadequate for this purpose, while advanced meth-
ods, such as the finite difference method and particularly the finite element method, are well suited for 
this task.

3.3.1.1 Finite Difference Method

The finite difference method is a method for solving differential and integral equations, or systems of 
such equations. In this method, the continuous geometry of the model is replaced by a grid, which is 
restricted in the basic form of the method to rectangular shapes and simple alterations thereof. At each 
grid point, the differential terms of the equation are replaced by the difference terms, and the obtained 
difference equations are then solved to yield the electric potential in the points of the grid. If this method 
is used to solve time-dependent partial differential equations (so that time also proceeds in discrete 
steps), the method is termed the finite-difference time-domain method. The attractive feature of this 
method is its straightforward implementation, but due to the rectangular mesh it is generally inaccurate 
with complicated object shapes, and particularly close to the curved boundaries.

3.3.1.2 Finite Element Method

The finite element method is another method for finding approximate solutions of differential and inte-
gral equations. The method is based on discretization of the geometry (meshing) into subregions, which 
are referred to as the finite elements (Reddy 2005). These elements can be of different shapes and sizes, 
which allow to model intricately shaped objects and to focus on the regions of interest (by making the 
mesh locally more dense). Similar to the finite difference method, the finite element method can also be 
extended to time-dependent problems. However, unlike with finite differences, the solution obtained for 
each finite element is a function varying smoothly between the nodes of the element and preserving the 
continuity also between the elements. The main advantage of the finite element method is its ability to 
handle complicated geometries and boundaries with relative ease, and while some attempts were made 
to model irregularly shaped cells or clusters of such cells with finite differences, these were confined to 
a 2-D space (Gowrishankar and Weaver 2003, Esser et al. 2007, Joshi et al. 2008). In contrast, the finite 
element approach can handle realistic 3-D shapes quite easily (Miller and Henriquez 1988, Pucihar et al. 
2006, 2009a), and in the next section we illustrate this in more detail.
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3.3.2 Irregularly Shaped Cells

Before discretization, a realistic model of the cell under consideration must be constructed and stored 
in the computer. While this process is straightforward for cells of simple geometric shapes (e.g., cells 
in suspension can be modeled as spheres), it becomes problematic when irregularly shaped cells are 
modeled (an extreme example of this is a nerve cell). During discretization, an even more compelling 
problem occurs, namely, the meshing of the cell membrane, which is over 1000-fold thinner than the 
dimensions of a typical cell. Even the modern adaptive-size meshing methods generally fail when such 
disproportions are involved. Another condition related to the membrane meshing that is difficult to 
meet is the uniform membrane thickness. Once all these difficulties are overcome, the final step is the 
computation of the electric potential and hence of the induced transmembrane voltage.

3.3.2.1 Constructing a 3-D Model of the Cell

The simplest approach in modeling an irregularly shaped cell is to compose it from several simple geo-
metrical objects (e.g., hemispheres, circular or elliptic cylinders) (Fear and Stuchly 1998, Buitenweg 
et al. 2003, Valič et al. 2003, Huang et al. 2004). However, typical cells growing in a dish or in a tissue 
have markedly irregular shapes, and this approach can only yield a rough approximation of the actual 
situation.

A more realistic three-dimensional model of an irregularly shaped cell can be constructed from 
a sequence of cross sections of the cell under consideration, as sketched in Figure 3.7. The cross sec-
tions are obtained by staining the cell with a membrane marker and acquiring images in different focal 
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FIGuRE 3.7 Construction of a 3-D model of two irregularly shaped CHO cells. (A) Fluorescence cross-section 
images of the cells stained with di-8-ANEPPS, acquired from the bottom to the top of the cells in 1 μm steps. (B) The 
contours. (C) The 3-D model in COMSOL Multiphysics 3.4. The interior of the rectangular block represents the 
extracellular medium, the gray-shaded faces are the electrodes, and the other four faces are insulating. (Adapted 
from Pucihar G. et al., Ann. Biomed. Eng., 34, 642, 2006.)
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planes. In these images, the contours of the cell are then detected, transformed into solid planes, com-
bined into a 3-D object, and imported into the workspace of a finite element software, such as COMSOL 
Multiphysics (COMSOL Inc., Burlington, MA).

3.3.2.2 Modeling the Cell Membrane

The normal component of the current density in the membrane, J, is given by

 J t
t t
d d

t t
t

( ) =
( ) − ( )( )

+
∂ ( ) − ( )( )

∂
σm i e m i eΨ Ψ Ψ Ψε

 (3.23)

with σm, εm, d, Ψi, and Ψe having the same meaning as in Equations 3.13, 3.15, and 3.19. The first term on 
the right-hand side represents the conductive component, and the second term the capacitive compo-
nent of the electric current flowing through the membrane.

When constructing a finite element model of the cell, direct incorporation of a realistic cell mem-
brane (i.e., a very thin layer of uniform thickness enclosing the cell) would require the model to consist 
locally of an extremely large number of finite elements. Even with the modern adaptive-size mesh gen-
eration algorithms, this is often prohibitively time consuming and demanding on computer memory. 
However, unless the spatial distribution of the electric potential inside the membrane is of interest, this 
can be avoided. Namely, as far as the electric potentials in the cytoplasm and the cell exterior are con-
cerned, the effect of the membrane with thickness d, electric conductivity σm, and dielectric permittivity 
εm is equivalent to the effect of an interface with thickness 0 (i.e., a mathematical surface) separating 
these two regions and characterized by surface electric conductivity κm = σm/d, and surface dielectric 
permittivity βm = εm/d. Thus, we can rewrite Equation 3.23 as

 J t t t
t t

t
( ) = ( ) − ( )( ) +

∂ ( ) − ( )( )
∂

κ βm i e m
i e

Ψ Ψ
Ψ Ψ

 (3.24)

Despite the membrane as such being absent from the model, the drop of electric potential at such an 
interface is equivalent to the ΔΨm induced on the membrane characterized by corresponding values of d, 
σm, and εm. In models constructed in this way, the mesh of finite elements is generated without difficulty, 
as disproportionally small elements corresponding to the membrane interior are avoided (Pucihar et al. 
2006, 2009a). By assuming that κm is a function of ΔΨm, this approach can be extended further, e.g., to 
simulate the course of electroporation (Pucihar et al. 2009a).

3.3.2.3 Computation of ΔΨm

In COMSOL Multiphysics, the electric potential Ψ is computed numerically by solving the discretized 
form of Equation 3.1, where σ and ε are the electric conductivity and dielectric permittivity of each 
region under consideration. In general, this gives Ψ as a function of both space and time, and thus 
describes both the transient and the steady state. The induced transmembrane voltage, ΔΨm(t), is then 
calculated as the difference between electric potentials on both sides of the membrane:

 ∆ = −Ψ Ψ Ψm i e( ) ( )t t  (3.25)

While the results obtained in this manner are quite accurate, they are only applicable to the particular 
cell shape for which they were computed. Figure 3.8 displays the steady-state ΔΨm(p) computed for the 
two irregularly shaped cells shown in Figure 3.7.
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3.3.3 Cells in Dense Suspensions and tissues

In dilute cell suspensions, the distance between the cells is much larger than the cell sizes themselves, 
and the local field outside each cell is practically unaffected by the presence of other cells. Thus, for 
cells representing less than 1% of the suspension volume (for a spherical cell with a radius of 10 μm, 
this means up to 2 million cells/mL), the deviation of the induced transmembrane voltage from the 
prediction given by Schwan’s equation (3.18) is negligible. However, for larger volume fractions occu-
pied by the cells, the distortion of the local field around each cell by the adjacent cells becomes more 
pronounced, and the deviation from Schwan’s equation is also larger (Figure 3.9). For suspensions 
with cell volume fractions over 10%, as well as for cells in clusters and lattices, a reliable determina-
tion of ΔΨm requires numerical computation (Susil et al. 1998, Pavlin et al. 2002, Pucihar et al. 2007). 
Regardless of the volume fraction they occupy, as long as the cells are suspended, they float freely, and 
their arrangement is rather uniform. Asymptotically, this would correspond to a face-centered lattice, 
and this lattice is also the most appropriate for the analysis of the transmembrane voltage induced on 
cells in suspension.

For even larger volume fractions, the electrical properties of the suspension start to resemble that of 
a tissue, but only to a certain extent. The arrangement of cells in tissues does not necessarily resemble a 
face-centered lattice, since cells can form specific structures (e.g., layers). In addition, cells in tissues can 
be directly electrically coupled (e.g., through gap junctions). Numerical modeling and computation of 
electric fields and currents in tissues is discussed in detail in Chapter 15.

3.4 Experimental Determination

An alternative to the analytical and numerical methods for determining the induced transmembrane 
voltage (ΔΨm) are the experimental techniques. These include the measurements of ΔΨm with micro-
electrodes and with potentiometric fluorescent dyes. Microelectrodes (either conventional or patch 
clamp) were used in pioneering measurements of the action potential propagation (Ling and Gerard 
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FIGuRE 3.8 Normalized steady-state ΔΨm(p) for two irregularly shaped cells from Figure 3.7. (Adapted from 
Pucihar G. et al., Ann. Biomed. Eng., 34, 642, 2006.)
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1949, Neher and Sakmann 1976) and were preferred for their simple use and high temporal resolution. 
However, the invasive nature of measurements and low spatial resolution are considerable shortcomings 
of this approach. Moreover, the physical presence of the electrodes during the measurement affects the 
distribution of the electric field around them, and thus also the value of ΔΨm. In contrast, measurement 
by means of potentiometric dyes is noninvasive, offers higher spatial resolution, does not distort the field 
and thus ΔΨm. Moreover, it can be performed simultaneously on a number of cells. For these reasons, 
during the last decades, the potentiometric dyes have become the preferred tool in experimental studies 
and measurements of ΔΨm.

3.4.1 Potentiometric Dyes

Based on their response mechanism, potentiometric dyes are divided into two classes (Invitrogen Corp. 
2009): (1) slow potentiometric dyes that are translocated across the membrane by an electrophoretic 
mechanism, which is accompanied by a fluorescence change and (2) fast potentiometric dyes that incor-
porate into the membrane, with their electronic structure and consequently their fluorescence proper-
ties dependent on transmembrane voltage.

Electric pulses used in electrophysiological and electroporation-based applications usually have dura-
tions in the range of microseconds to milliseconds. In order to measure ΔΨm induced by such pulses, fast 
potentiometric dyes have to be used. These dyes respond to changes in ΔΨm within microseconds or less, 
which makes them suitable even for measurements of the transient effects. Slow dyes, on the other hand, 
need several seconds to respond to a change of ΔΨm.

One of the fast potentiometric dyes widely used for measuring ΔΨm is di-8-ANEPPS (di-8-butyl-
amino-naphthyl-ethylene-pyridinium-propyl-sulfonate), developed by Leslie Loew and colleagues at 
the University of Connecticut (Fluhler et al. 1985, Gross et al. 1986, Loew 1992). This dye is nonfluo-
rescent in water, but becomes strongly fluorescent when incorporated into the lipid bilayer of the cell 
membrane, thereby making the membrane highly visible. This enables the construction of numerical 
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FIGuRE 3.9 Normalized steady-state ΔΨm(θ) for spherical cells in suspensions of various densities (intercellular 
distances). Solid: The analytical result for a single cell as given by Equation 3.18. Dashed: numerical results for cells 
arranged in a face-centered cubic lattice and occupying (with decreasing dash size) 10%, 30%, and 50% of the total 
suspension volume.
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models of cells from microscopic fluorescence images, as described in Section 3.3, and thereby provides 
a possibility to compute ΔΨm on the same cells on which an experiment was carried out.

The fluorescence intensity of di-8-ANEPPS varies proportionally to the change of ΔΨm; the response 
of the dye is linear for voltages ranging from −280 to +250 mV (Lojewska et al. 1989, Cheng et al. 1999). 
Relatively small changes in fluorescence of the dye, uneven membrane staining, and dye internalization 
make di-8-ANEPPS less suitable for absolute measurements of membrane voltage, such as the resting 
membrane voltage, although such efforts were also reported (Zhang et al. 1998). It is, however, well 
suited for measuring larger changes in membrane voltage, such as the onset of induced transmembrane 
voltage in nonexcitable cells exposed to external electric fields (Gross et al. 1986, Montana et al. 1989), 
or action potentials in excitable cells (Bedlack et al. 1994, Cheng et al. 1999).  di-8-ANEPPS also allows 
for determination of ΔΨm by ratiometric measurements of fluorescence excitation (Montana et al. 1989, 
Hayashi et al. 1996) or emission (Knisley et al. 2000), which increases the sensitivity of the response.

3.4.2 Image acquisition and Data Processing

Since the sensitivity of fast potentiometric dyes to the changes of ΔΨm is low (typically, a change of ΔΨm 
by 100 mV results in the change of fluorescence intensity by 2%–12%), the fluorescence changes are 
hardly discernible by the naked eye and become apparent only after image processing and analysis.

This procedure is performed in several steps (Pucihar et al. 2009b). The first step is acquiring a pair 
of images: a control image (immediately before the exposure to the electric field) and the pulse image 
(during the exposure). To get a more reliable measurement, a sequence of pulses can be applied, with 
both the control and the pulse image acquired for each pulse. The background fluorescence is then 
subtracted from both images. For the cell under investigation, the region of interest corresponding to 
the membrane is determined, and the fluorescence intensities along this region in the control and pulse 
image are measured. For each pulse, the control data are subtracted from the pulse data, and the result 
divided by the control data to obtain the relative fluorescence changes. If a sequence of pulses is applied, 
the values of relative fluorescence changes determined for each pulse can be averaged. The relative fluo-
rescence changes are then transformed into values of ΔΨm using a calibration curve. A rough estima-
tion of this curve can be obtained from the literature, but for higher accuracy, it has to be measured 
for each particular setup, as shown in Figure 3.10. Calibration is performed with either (1) potassium 
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FIGuRE 3.10 The calibration curve for measurements of ΔΨm using di-8-ANEPPS.
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ionophore valinomycin and a set of different potassium concentrations in external medium (Montana 
et al. 1989, Pucihar et al. 2006), or (2) patch clamp in voltage clamp mode (Zhang et al. 1998; Pakhomov 
and Pakhomova 2010). Finally, the voltage is plotted as a function of the relative arc length. To remove 
some of the noise inherent to potentiometric measurements, the curve can be smoothed using a suitable 
filter (e.g., the moving average). Figure 3.11 shows a cell stained with di-8-ANEPPS, the processed image 
reflecting ΔΨm, and the plot of ΔΨm along the cell membrane.
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