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Abstract

The paper describes a general method for analysis of time courses of transmembrane voltage induced by time-varying electric fields.
Using this method, a response to a wide variety of time-varying fields can be studied. We apply it to different field shapes used for

Ž .electroporation and electrofusion: rectangular pulses, trapezoidal pulses approximating rectangular pulses with finite rise time ,
Ž .exponential pulses, and sine RF -modulated pulses. Using the described method, the course of induced transmembrane voltage is

investigated for each selected pulse shape. All the studies are performed at different pulse durations, each for both the normal
physiological and the low-conductivity medium. For all the pulse shapes investigated, it is shown that as the conductivity of extracellular
medium is reduced, this slows down the process of transmembrane voltage inducement. Thus, longer pulses have to be used to attain the
desired voltage amplitude, as the influence of the fast, short-lived phenomena on the induced voltage is diminished. Due to this reason,
RF-modulation in such a medium is ineffective. The appendix gives a complete set of derived expressions and a discussion about possible
simplifications. q 1998 Elsevier Science S.A.
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1. Introduction

Exposure of a biological cell to electric field can produce a variety of profound biochemical and physiological responses.
w xMost of these responses are based on the modification of transmembrane voltage by the applied electric field 1–4 . If the

Ž .field strength exceeds a certain threshold value, this can lead to pore formation in the membrane electroporation or fusion
Ž . w xof adjacent cells electrofusion 5,6 . Nowadays, these phenomena are widely used in different applications, such as gene

w x w x w xtransfection 7 , preparation of monoclonal antibodies in immunochemistry 8 , and electrochemotherapy of tumors 9 . For
optimal effects of such applications, one must select the appropriate shape, duration and amplitude of the applied electric
field. This is only possible if the dynamics of transmembrane voltage induced by such a field can be evaluated.

If a spherical cell with no surface charge is exposed to a DC field, the steady-state value of transmembrane voltage DFm

is calculated by solving the Laplace partial differential equation, which governs static electric fields and reflects their
conservative properties. This approach yields the solution in form of the expression:

DF s fER cos u 1Ž .m

Ž .where E is the strength of the electric field which has to be DC for this expression to be valid , R is the cell radius, u is
the polar angle measured with respect to the direction of the field, and f is a function reflecting the electrical and

w xgeometrical properties of the cell 10 :
2 2 33l 3dR l q 3d Ryd l ylŽ . Ž .o i m i

fs 2Ž .1 332 R l q2l l q l y2 Ryd l yl l ylŽ . Ž . Ž . Ž .m o m i o m i mž /2

where l , l and l are the conductivities of the cytoplasm, cell membrane, and extracellular medium, respectively, R isi m o
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Fig. 1. The model on which the calculations were based. The cell is a sphere with radius of R, enclosed by a membrane of uniform thickness d. External
electric field is homogeneous and retains its orientation, though its strength E changes with time. Specific conductivities and permittivities are attributed to

Ž . Ž . Ž .regions occupied by cytoplasm l , ´ , membrane l , ´ and extracellular medium l , ´ .i i m m o o

Ž .again the cell radius, and d is the membrane thickness. The meaning of the parameters used in Eq. 2 is also illustrated in
Fig. 1.

Often, a further simplification is made by assuming l <l , l , which reduces function f into a constant, fs3r2.m i o
Ž .To analyze DF in response to a step turn-on of a DC field, Eq. 1 is sometimes modified, presuming the exponentialm

shape of the DF in response to a step change of E:m

t
DF t s fER cos u 1yexp y 3Ž . Ž .m ž /t

w xwhere t is the time constant of the membrane given by Ref. 11 :

Rcm
ts 4Ž .2l l Ro i

q lm2l ql do i

and c s´ rd is the membrane capacitance, with ´ denoting the membrane permittivity.m m m

The described time constant approach can also be used in the case of rectangular pulses, since the turn-off of the electric
field is again a step change. However, electric fields with shapes different from rectangular, such as exponential, or
RF-modulated, are often used. In these cases, a different approach to the evaluation is needed.

In this paper, we present a general method for analysis of time courses of transmembrane voltage induced by
time-varying fields, and we use this method to study the fields commonly used for electroporation and electrofusion: single

Ž .rectangular pulses, trapezoidal pulses modeling rectangular pulses with rise time , exponential pulses, RF-modulated
pulses, as well as trains of such pulses.

Two remarks should be made before we proceed with the discussion of the problem. First, since f and t are actually
Ž .functions, more rigorous rules of denotation would demand to imply this by writing the terms as f l , l , l , R, d andi m o

Ž .t l , l , l , ´ , R, d . For brevity, we avoid such denotation. Secondly, the calculations which lead to the describedi m o m
Ž .equations are based on two assumptions: A cell shape is presumed to be spherical; for a majority of cell types in a

Ž . Žsuspension, this is a fair approximation, but it does not hold for disc-shaped e.g., erythrocytes and rod-shaped cells e.g.,
. Ž .some types of bacteria ; and B applied electric field is treated as homogeneous and defined as the ratio between the

applied voltage and the distance between the electrodes; this approximation is only valid if two parallel plates are used as
electrodes, and the distance between the plates is much smaller than the size of the plates; often, wire electrodes are used

Ž .instead e.g., needle electrodes in poration of tissues in vivo , yielding a strongly nonuniform distribution of the field, which
w x Ž . Ž .can only be evaluated by means of numerical methods 12 . The two assumptions given by A and B provide the access to

the analytical approach and shall therefore be retained in the forthcoming calculations.
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2. Calculations

Ž .For the cases where electric field strength remains constant once the field is turned on, Eq. 1 can be used to give the
Žsteady-state solution. If cytoplasm, membrane and extracellular medium were all purely conductive having no dielectric

.permittivity , this equation would also yield transmembrane voltage induced at any given moment in response to the
momentary value of electric field strength. Any material, however, demonstrates a certain amount of permittivity. 1 When it

Žis exposed to electric field, voltage induced on the material consists of two components; the first due to the conductivity of
. Ž .the material is proportional to the electric field strength, while the other due to the permittivity of the material is

w xproportional to the time derivative of electric field strength 13 . In order to account for these permittivities, instead of
conductivities of the materials, the more general admittiÕity operators have to be used:

d
Lslq´ 5Ž .

d t

Ž . Ž . Ž . Ž .where dr d t is a differential operator that transforms a differentiable function y t into its time derivative d y r d t .
By taking the function f and substituting L , L , and L for l , l , and l , respectively, we obtain the followingi m o i m o

expression:

2 2 33L 3dR L q 3d Ryd L yLŽ . Ž .o i m i
Fs . 6Ž .1 332 R L q2 L L q L y2 Ryd L yL L yLŽ . Ž . Ž . Ž .m o m i o m i mž /2

Ž .F is a function of three differential operators L , L , and L and can thus itself be treated as a structured, higher-orderi m o
w xdifferential operator 14 . To avoid dealing with differential operators, we transfer the analysis into complex-frequency

Ž .space, where time derivatives are replaced by multiplication by the complex frequency denoted by s . Here, the admittivity
operator is formulated as:

Lslq´ s. 7Ž .
Ž . Ž .If the terms L , L , and L in Eq. 6 are written according to Eq. 7 , and the result is then expanded, we get thei m o

expression of the following type:

a s2 qa sqa1 2 3
F s s 8Ž . Ž .2b s qb sqb1 2 3

where

a s3dl l 3R2 y3dRqd2 ql 3dRyd2 , 9aŽ . Ž . Ž .Ž .1 o i m

a s3d l ´ ql ´ 3R2 y3dRqd2 q l ´ ql ´ 3dRyd2 , 9bŽ . Ž . Ž . Ž . Ž .Ž .2 i o o i m o o m

a s3d´ ´ 3R2 y3dRqd2 q´ 3dRyd2 , 9cŽ . Ž . Ž .Ž .3 o i m

1 33b s2 R l q2l l q l q2 Ryd l yl l yl , 9dŽ . Ž . Ž . Ž . Ž .1 m o m i m o i mž /2

1 1 33b s2 R l ´ q´ ql ´ q2´ q2´ ql ´ q2´ q2 RydŽ . Ž .2 i m o m i m o o i mž / ž /ž /2 2

= l ´ y´ ql ´ y2´ q´ yl ´ y´ , 9eŽ . Ž . Ž . Ž .Ž .i m o m i m o o i m

1 33b s2 R ´ q2´ ´ q ´ q2 Ryd ´ y´ ´ y´ . 9fŽ . Ž . Ž . Ž . Ž .3 m o m i m o i mž /2

Ž .In the same manner as function f would be more consistently denoted as f l , l , l , R, d , function F should be writteni m o
Ž .as F l , l , l , ´ , ´ , ´ , R, d, s , thus, implying its dependence on all of these parameters. Again, for the brevity, wei m o i m o

Žchoose to explicitly indicate only the dependence of F on s since this is the only dynamic parameter for a single

1 Ž .The term ‘permittivity’ implies the total permittivity of the material, i.e., the product of the relative permittivity of the material e.g., ´ s81 andr water
Ž y1 2 y1 y1.the dielectric constant of the vacuum ´ s8.854=10 A s V m .o
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Ž . Ž . y1Fig. 2. The general principle used in the calculation of DF t induced by E t . LL represents the Laplace transform, and LL the inverse Laplacem
Ž . Ž . Ž . Ž . Ž .transform. E t is first transformed into E s , which is then multiplied by F s to give DF s rR. The normalized time course DF t rR is thenm m

obtained as the inverse transform.

. Ž .calculation—for other parameters, numerical values are inserted . Based on Eq. 1 and the introduced modifications, the
relation between E and DF in the complex-frequency space is given by:m

DF s sF s E s R cos u 10Ž . Ž . Ž . Ž .m

Ž . Ž . Ž . Ž . Ž . Ž .where DF s and E s are Laplace Heaviside transforms of the time courses DF t and E t , respectively, and F s ism m
Ž .given by Eq. 7 .

Ž .The described approach allows the induced transmembrane voltage to be calculated for any time course E t , provided
Ž Ž . .that it can be transformed into the complex-frequency space i.e., provided that its Laplace transform E s exists . The

Ž . Ž . Ž .product F s E s represents DF s at us0, normalized to the cell radius, and the inverse Laplace transform yieldsm
Ž .DF t at us0, normalized to R. The concept of the method is sketched in Fig. 2. One then multiplies the expression by Rm

Ž .to scale the response, and by cos u to obtain the spatial distribution of induced transmembrane voltage.
Ž .General solutions describing responses to rectangular, triangular, trapezoidal, exponential, and sine RF -modulated

pulses are given in Appendix A. In Section 3, we focus on specific time courses obtained from these solutions by insertion
of numerical values of the parameters.

The cosine distribution of DF on the cell membrane is retained in all cases and at any moment. Therefore, them
Ž . Ž .multiplicative term cos u will be left out in further analysis thus, we study DF at us0 . Also, for the clarity ofm

Ž . Ž .reasoning, values of the geometrical R and d and electrical parameters l , l , ´ , ´ , and ´ will be kept constanti m i m o
Ž .throughout the analysis. The only exception will be made for the extracellular medium conductivity l . While theo

permittivity of the extracellular medium is mostly dictated by its prevalent constituent, i.e., water, the medium conductivity
strongly depends on the ionic concentrations in the medium. Since in different reports of experiments in vitro conductivity

w xof the medium varies for at least two orders of magnitude 15–17 , we will consider two particular cases—a physiological
Ž . Ž .medium with l ;l and a typical low-conductivity medium l <l . Values of all the parameters are given in Tableo i o i

1.

Table 1
Values of electric and dimensional parameters used in the calculations

Parameter Denotation Value
y1 y1 aCytoplasmic conductivity l 3.0=10 S mi
y10 y1 y1 bCytoplasmic permittivity ´ 7.1=10 A s V mi
y7 y1 c,dMembrane conductivity l 3.0=10 S mm
y11 y1 y1 eMembrane permittivity ´ 4.4=10 A s V mm
y1 y1 f y2 y1 gŽ . Ž .Extracellular medium conductivity l 3.0=10 S m physiological medium , 1.0=10 S m low-conductivity mediumo
y10 y1 y1 bExtracellular medium permittivity ´ 7.1=10 A s V mo

hCell radius R 10 mm
hMembrane thickness d 5 nm

a y1 y1 y1 y1 w xReported values range between 2.0=10 S m and 5.5=10 S m 18–20 .
b Ž .A typical permittivity of an aqueous solution relative permittivityf80 .
c w xGascoyne et al. 21 .
d w x w xFrom Hu et al. 22 , using conversion method given by Arnold et al. 17 .
e w x y1 1Measured values of relative membrane permittivity lie between 4.5 and 6.5 21 ; relative membrane permittivity of 5 corresponds to ´ f4.4=10 A sm

y1 y1 y2 y2 w x y1 1V m ; a similar result is obtained from the data on membrane capacitance—from c f10 F m 17,23,22,24 we get ´ sc df5.0=10 Am m m

s Vy1 my1.
fSet at equal value as l .i
g y3 y1 y2 y1 w xReported values range from 1.0=10 S m to 5.0=10 S m 17,25–27 ; many authors do not give the value of l .o
h w xAlberts et al. 28 .
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3. Results and discussion

3.1. Rectangular pulses

w x Ž .Rectangular pulses are often used in electroporation and electrofusion 15,29,30 . It is sensible to first focus on DF tm

induced by an ideal rectangular pulse, thus, elucidating the effect of electrical properties of the medium on the relation
Ž . Ž .between E t and DF t . Then, by accounting for rise time of the pulse produced by a realistic generator, we can alsom

analyze the role of generator features.
Ž . Ž .The derivation of DF t in response to an ideal rectangular pulse is given by Eq. A7 in Appendix A. Fig. 3 showsm

time courses of DF induced by three rectangular pulses with durations of 200 ns, 1 ms, and 5 ms, respectively, each ofm

them plotted for both a physiological and a low conductivity medium.
Fig. 3 shows that the induced transmembrane voltage is formed much slower when the medium conductivity is low.

Pulses longer than 10 ms, however, suffice for DF to reach the steady-state value even in a low conductivity medium.m
ŽWith such pulses, for a purpose of only evaluating this steady-state value which still depends on the conductivities and

. Ž .dimensions of the cell , the simpler Eq. 1 can be used.

( )3.2. Trapezoidal pulses rectangular pulses with rise time

Pulses produced by a realistic generator are always characterized by a certain rise time. To account for this, we presumed
Ž Ž .the trapezoidal shape of the generated pulse this is certainly a simplification, since the course of E t during the rise time is

. Ž .generally nonlinear . The time course of DF in response to a trapezoidal pulse is given by Eq. A11 in Appendix A.m

Since rise times of modern pulse generators never exceed several tenths of a microsecond, and the induced DF onlym
Žreaches a very small fraction of its final value during such a short time presuming that the pulse duration is long enough to

Ž . .obtain a substantial response, e.g., case c in Fig. 3 , the response induced by a trapezoidal pulse with such a short rise time
is practically equivalent to the response induced by a rectangular pulse of the same duration. Setting the pulse duration
significantly longer than the rise time is the only sensible choice if the pulse is to resemble a rectangular shape, which is
generally desired.

Ž . Ž . Ž . Ž . Ž . Ž .Fig. 3. A rectangular pulse left and the induced DF t right . a T s200 ns; b T s1 ms; c T s5 ms. The thicker line corresponds to them 1 1 1
Žresponse in a physiological medium, and the thinner line to the response in a low-conductivity medium. The dotted line gives the value of 3r2 ER the

Ž . .steady-state value of DF , at us0, according to the most simplified relation between E and DF , see Eq. 2 and the subsequent commentary . Form m

parameter values used in the calculations, see Table 1.



( )T. Kotnik et al.rBioelectrochemistry and Bioenergetics 45 1998 3–168

Ž . Ž . Ž . Ž . Ž . Ž .Fig. 4. An exponential pulse left and the induced DF t right . a t s1 ms; b t s5 ms; c t s20 ms. The thicker line corresponds to them p p p

response in a physiological medium, and the thinner line to the response in a low-conductivity medium. The dotted line gives the value of 3r2 ER.

3.3. Exponential pulses

w xExponentially decaying pulses are also widespread in the applications 31–33 . Since the inducement process is not
Ž .instantaneous, it is obvious that with pulses of this shape, neither the steady-state Eq. 1 , nor the first-order response given

Ž . Ž .by Eq. 3 enables the evaluation of the induced voltage. The derivation of DF t in response to an exponentialm
Ž . Ž .exponentially decaying pulse is given by Eq. A12d in Appendix A. Fig. 4 shows time courses of DF induced by threem

such pulses, with time constants of 1 ms, 5 ms, and 20 ms, respectively, each of the responses plotted for both a
physiological and a low conductivity medium.

ŽBecause the exponential pulses are inherently time-varying, the influence of pulse duration determined here by the time
.constant of the pulse on the shape of DF and its maximum value is probably most apparent with this type of pulses.m

Typical time constants of the pulses used in experiments lie in the range of ms, and focusing on the range of first several ms
of such pulse, provided that the physiological medium is used, the pulse resembles a rectangular pulse. Therefore, we can

Ž .evaluate the peak value of the induced voltage using the Eq. 1 without any crucial inaccuracy. On the other hand, a
decrease in medium conductivity slows the inducement process significantly. As Fig. 4 shows, it is generally very hard to

Ž . Ž . Ž . Ž . Ž .Fig. 5. A sine wave left and the induced DF t right . a vr2ps100 kHz; b vr2ps1 MHz. The thicker line corresponds to the response in am

physiological medium, and the thinner line to the response in a low-conductivity medium.
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Ž . Ž . Ž . Ž . Ž .Fig. 6. A train of rectangular pulses left and the induced DF t right . a T s200 ns, T s400 ns; b T s1 ms, T s2 ms. The thicker linem 1 2 1 2

corresponds to the response in a physiological medium, and the thinner line to the response in a low-conductivity medium. The dotted line gives the value
of 3r2 ER.

predict the peak value of the induced voltage, since the shape of the response strongly depends on the medium conductivity
Ž .it is influenced by other parameters as well .

3.4. Sine-modulated pulses

In the recent years, several papers have reported an improved efficiency of electroporation and electrofusion obtained by
w xmodulation of rectangular pulses with a radio-frequency sinewave 34,35 . Without getting involved in the discussion about

the mechanisms of improved efficiency, we present the analysis of the time courses of DF induced by a sine-shapedm

electric field. Since the response induced by a modulated pulse is a combination of responses to a rectangular pulse and to a
Ž .sine wave, the effect of the latter component is best studied separately. The derivation of DF t in response to a sine wavem

Ž . Ž .is given by Eq. A14d in Appendix A, while the response to a sine-modulated rectangular pulse is derived in Eq. A16 .
Fig. 5 shows time courses of DF induced by two sine waves with frequencies of 100 kHz and 1 MHz, respectively. Eachm

response is plotted for both a physiological and a low conductivity medium.
We see that with increasing frequency, the amplitude of the induced DF decreases. Since the low conductivity mediumm

slows down the dynamics of voltage inducement, the attenuation of the oscillations in the induced transmembrane voltage
occurs at much lower frequencies. Therefore, the efficacy of modulation in such a medium is questionable.

3.5. Trains of pulses

When trains of pulses are applied, the gap between consecutive pulses is in most cases much larger than the pulse
duration. Therefore, the transmembrane voltage induced by a pulse practically disappears before the next pulse occurs.
Response to each pulse is dictated by this pulse only and can be treated separately from the responses to other pulses. The
gap between pulses can, however, be decreased to such an extent that the next pulse starts before the response to the
previous one completely fades away. In this case, the impact of superposition of single responses becomes evident. Fig. 6
shows two examples of responses to such trains of rectangular pulses.

4. Conclusions

Besides providing a tool for general analysis of time courses of transmembrane voltage induced by different time-varying
electric fields, the presented method allows to calculate a particular response to a pulse of given shape and duration, time
constant, or modulation frequency. In this manner, the method can be used when deciding on the pulse parameters that

Ž .would provide a specific value of induced transmembrane voltage and or retain this value for a specific duration.
Ž .There is another important though at the present time still hypothetical utilization of the presented method. As the

computer capabilities increase, molecular dynamics simulations of lipid bilayers promise to reach time ranges of
w xmicroseconds within several years 36 . Since the time of pore formation in electroporation is also estimated to lie within the

w xmicrosecond range 15,37 , the opportunity could soon arise to simulate electroporation on a molecular level. For such a
simulation to yield realistic results, it is essential to model all the details as authentically as possible, including exact time
course of transmembrane voltage induced by a given pulse of electric field strength.

One of the important conclusions of this study is the necessity to determine the conductivity of the medium used in a
particular experiment. This conductivity strongly influences the dynamics of induced transmembrane voltage, and hence
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Table 2
Critical values of pulse parameters

Pulse type Parameter Critical value Explanation
aRectangular Pulse duration -1 ms Induced voltage does not reach 90% of the steady-state

b-13 ms value predicted by DF s3r2 ER cosum

aExponential Time constant -20 ms Induced voltage does not reach 90% of the steady-state
b-260 ms value predicted by DF s3r2 ER cosum

a Ž .Sine-modulated Sine frequency )170 kHz Amplitude ratio between the offset and the sine in DF tm
b Ž .)14 kHz falls below 90% of the same ratio in E t

a Ž .)5.5 MHz Amplitude ratio between the offset and the sine in DF tm
b Ž .)600 kHz falls below 10% of the same ratio in E t

a Ž y1 y1.Physiological medium l s3.0=10 S m .o
b Ž y2 y1.Low conductivity medium l s1.0=10 S m ; other values used in this estimation are given in Table 1.o

Žimposes the range of pulse duration and, though to less extent, the pulse amplitude; a thorough treatise of this problem is
w x.given in Ref. 10 . Fig. 5 gives an illustrative example of this influence, as the use of low conductivity medium practically

eliminates the response to a 1 MHz sine wave.
Ž .Generally, each pulse shape is characterized by a key parameter e.g., pulse duration, time constant, or sine frequency .

Ž .One can define a certain critical value of this parameter, above or below which the differences between the steady-state
Ž Ž .. Ž .results given by Eq. 1 and the dynamic analysis based on the expressions for the time courses given in Appendix A

become obvious. Table 2 gives the key parameters of investigated pulse shapes and the estimations of pertaining critical
values for both physiological and low conductivity medium.

Another very important value to bear in mind when designing the pulses for electroporation or electrofusion is the radius
of the cells used in the experiment, since the amplitude of induced transmembrane voltage strongly depends on cell radius, 2

Ž . Ž .as Eqs. 6 and 10 reveal.
Finally, we should also mention that the presented model, though already fairly complex, does not account for the fact

that permittivity of any material is also frequency dependent. This dependence becomes apparent when components in the
Ž . w xMHz range are present in the harmonic spectrum of E t 38 . Some dielectrophoretic and electrorotational measurements

Ž .imply that even in highly conductive extracellular solutions, very short pulses or very high field frequencies consistently
w xinduce lower transmembrane voltage than predicted theoretically 39,23 . If the model was expanded further by taking into

account the frequency-dependent behavior of ´ , ´ , and ´ , it might offer an explanation for these results.i m o
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Appendix A

A.1. General principles

Ž .As shown in Fig. 2, three steps are necessary to obtain the time course of transmembrane voltage DF t induced by am
Ž . Ž .given time course of electric field strength E t . First, the Laplace transform of E t is calculated:

E s sLL E t A1Ž . Ž . Ž .
Ž .DF s is then obtained asm

DF s sE s PF s PR cos u A2Ž . Ž . Ž . Ž .m

Ž .and the inverse Laplace transform of this expression yields the time course DF t :m

y1
DF t sLL DF s . A3Ž . Ž . Ž .m m

Ž .This method is useful for simple mathematical functions E t , for which both the Laplace transform and the inverse

2 Ž . Ž .A first look at Eq. 10 might suggest that the amplitude of DF is exactly proportional to R. This is not true, however, since F s is also a functionm

of R.
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Ž .Fig. 7. An example of two consecutive applications of superposition principle. a Superposition of two oppositely signed step functions gives a rectangular
Ž .pulse. Due to the linearity of the transforms, superposition of responses to these step functions yields a response to this rectangular pulse. b Superposition

Ž .of shifted pulses yields a train of pulses, and superposition of responses to single pulses which were constructed by the first superposition results in the
response to the train.

Ž . Ž . Ž .transform of corresponding DF t given by Eq. A2 are easily calculated. As for the more complex functions E t , manym

of them can be represented in the form of a linear combination of these simple functions:

E t sK PE t qK PE t q . . . qK PE t . A4Ž . Ž . Ž . Ž . Ž .1 1 2 2 n n

Ž .Since both the Laplace transform and the inverse Laplace transform are linear operations, the response DF t inducedm
Ž . Ž Ž ..by E t which conforms to Eq. A4 can be obtained as a sum of partial responses, i.e.,

DF t sK PDF t qK PDF t q . . . qK PDF t A5Ž . Ž . Ž . Ž . Ž .m 1 m1 2 m 2 n m n

Ž . Ž . Ž .where DF t denotes the response to E t alone. Based on this property, DF t induced by a rectangular pulse ofm i i m

amplitude E and duration T can be calculated as a sum of two step responses bearing opposite signs, with amplitudes qE0 0

and yE , the second step response delayed for T with respect to the first one. Similarly, a response to trapezoidal pulse of0

duration T and rise time T is obtained as a sum of four ramp responses, the last three shifted after the first one by T ,on on
Ž . ŽTyT presuming thereby T sT , and T , respectively the terms signed q, y, y, and q, respectively, for a positiveon off on

.pulse . Using the rules of linearity once again, we can take the obtained pulse response and consecutively superimpose an
Ž .array of shifted pulse responses, thus determining the response to a series train of pulses. The described example of

multilevel superposition is sketched in Fig. 7.

A.2. Rectangular pulses

Ž . Ž .We first calculate DF t induced by the unit step function we denote the step response by DF :m m1

E t su t A6aŽ . Ž . Ž .0

1
E s s A6bŽ . Ž .

s

DF s a qa sqa s2Ž .m1 1 2 3
sF s PE s s A6cŽ . Ž . Ž .2 3R b sqb s qb s1 2 3
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a b a b1 2 3 2
ya q2 tDF t a a aŽ . 2b 2bm1 3 1 3 1 3 ys Pu t q y q P 1ye Pu tŽ . Ž .tž /0 012R b 2b 2b (b y4b b3 1 3 2 1 3

a b a b1 2 3 2
ya q2 ta a 2b 2b1 3 1 3 yq y y P 1ye Pu t . A6dŽ . Ž .tž / 0222b 2b (b y4b b1 3 2 1 3

Ž . Ž . Ž . Ž . Ž . Ž .The constants from a up to b are given by Eqs. 9a , 9b , 9c , 9d , 9e and 9f in the main text, and the time1 3

constants t and t are given by:1 2

2b3
t s , A6eŽ .1 2(b y b y4b b2 2 1 3

2b3
t s . A6fŽ .2 2(b q b y4b b2 2 1 3

Ž .We choose to represent the powers of the exponential parts in Eq. A6d in terms of t and t , because the time1 2
Ž . Ž . Ž .constants given by Eqs. A6e and A6f characterize the responses to all the treated functions E t , as we shall see later.

Ž . Ž . Ž .Eq. A6d gives the response normalized to both the cell radius R and the amplitude of electric field strength E . To
Ž .obtain the actual response, the amplitude has to be scaled by both R and E. A closer look at Eq. A6d reveals that at t™0

the normalized response equals a rb , and with t™` it approaches a rb .3 3 1 1

To obtain the response to a rectangular pulse, we combine two step responses, as described before and illustrated in
Fig. 7:

DF t sDF t Pu t yDF tyT Pu t A7Ž . Ž . Ž . Ž . Ž . Ž .m m1 0 m1 1 T1

where T is the pulse duration.1

Using the superposition principle once again, we can formulate the response to a train of pulses as:
`

DF t s DF tykT Pu t yDF tyT ykT Pu t A8Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ým m1 2 kT m1 1 2 T qkT2 1 2
ks0

Ž .where T is again the pulse duration, and T is the pulse period time elapsed between consecutive pulses . To evaluate the1 2

response in a finite time range, e.g., up to tsT , one only has to evaluate the sum up to ksT rT .fin fin 2

A.3. Triangular and trapezoidal pulses

To analyze the response to a triangular or a trapezoidal pulse, we first determine the response induced by the unit ramp
Ž .function, denoting this response by DF t :m t

E t s t Pu t A9aŽ . Ž . Ž . Ž .0

1
E s s A9bŽ . Ž .2s
DF s a qa sqa s2Ž .m t 1 2 3

sF s PE s s A9cŽ . Ž . Ž .2 3 4R b s qb s qb s1 2 3

2a b a b a b1 3 2 2 1 2
q y ya32 tDF t a a a b b 2bŽ . 2bm t 1 2 1 2 1 1 1 ys P tPu t q y q P 1ye Pu tŽ . Ž .tž /0 012 2R b 2b 2b (b y4b b1 1 1 2 1 3

2a b a b a b1 3 2 2 1 2
q y ya32 ta a b b 2b 2b2 1 2 1 1 1 yq y Ž . Ž .tž / 022 22b 2b (b y4b b1 1 2 1 3

Ž . Ž . Ž . Ž . Ž . Ž .where the constants from a up to b are given by Eqs. 9a , 9b , 9c , 9d , 9e and 9f in the main text, while t and t1 3 1 2
Ž . Ž .are defined by Eqs. A6e and A6f , respectively.

y P 1ye Pu t A9d
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The response to a symmetrical triangular pulse of duration T is then given by:1

T1
DF t sDF t Pu t y2PDF ty Pu t qDF tyT Pu t A10Ž . Ž . Ž . Ž . Ž . Ž . Ž .m m t 0 m t m t 1 TT 11ž /2

2

whereas the response to a symmetrical trapezoidal pulse of duration T and rise time T is expressed as:1 on

DF t sDF t Pu t yDF tyT Pu t yDF ty T yT u t qDF t tyT u t .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .m m t 0 m t on T m t 1 on T yT m t 1 Ton 1 on 1

A11Ž .
To obtain the response to a train of pulses, we gather a series of shifted pulse responses into a sum on the analogy of the

Ž .principle presented by Eq. A8 .

A.4. Exponential pulses

Ž .For an exponentially decaying pulse with time constant t , we denote the induced transmembrane voltage by DF tp mexp

and compute:
t

yE t se Pu t A12aŽ . Ž . Ž .t 0p

1
E s s A12bŽ . Ž .1

sq
tp

DF s a qa sqa s2Ž .mexp 1 2 3
sF s PE s s A12cŽ . Ž . Ž .

2 y1R b qb sqb s sqtŽ . Ž .1 2 3 p

2 tDF t a t ya t qaŽ .mexp 1 p 2 p 3 ys Pe Pu tŽ .t 0p2R b t yb t qb1 p 2 p 3

2a b a b a b a b b a b a b3 1 3 2 1 2 3 1 2 2 2 3 2
ya Pt qa y a b y y Pt qa b ya b y q1 p 2 2 1 p 1 3 3 1ž / ž /b b 2 2b 2 2b3 3 3 3q q

2 2 22P b t yb t qb (b t yb t qb b y4b bŽ .1 p 2 p 3 Ž .1 p 2 p 3 2 1 3

t
yPt Pe Pu tŽ .tp 01

2a b a b a b a b b a b a b3 1 3 2 1 2 3 1 2 2 2 3 2
ya Pt qa y a b y y Pt qa b ya b y q1 p 2 2 1 p 1 3 3 1ž / ž /b b 2 2b 2 2b3 3 3 3q y

2 2 22P b t yb t qb (b t yb t qb b y4b bŽ .1 p 2 p 3 Ž .1 p 2 p 3 2 1 3

t
yPt Pe Pu t . A12dŽ . Ž .tp 02

This solution already gives a response to an exponential pulse. To obtain a response to a train of exponential pulses, we
Ž .again follow the logic presented by Eq. A8 , only this time the expression is even simpler. For a pulse period T , it reads:2

`

DF t s DF tykT u t A13Ž . Ž . Ž . Ž .Ým mexp 2 kT2
ks0

( )A.5. Sine RF -modulated pulses

Ž .First, we calculate the transmembrane voltage DF induced by a sine-shaped E t :msin

E t ssin v tPu t A14aŽ . Ž . Ž .0

v
E s s A14bŽ . Ž .2 2s qv

DF s v a qa sqa s2Ž . Ž .msin 1 2 3
s A14cŽ .2 2 2R b qb sqb s s qvŽ .Ž .1 2 3
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DF t a b q a b ya b ya b v 2 qa b v 4Ž . Ž .msin 1 1 2 2 1 3 3 1 3 3
s Psin v tPu tŽ .02 2 2 2 4R b q b y2b b v qb vŽ .1 2 1 3 3

a b ya b vq a b ya b v 3Ž . Ž .2 1 1 2 3 2 2 3
q Pcos v tPu tŽ .02 2 2 2 4b q b y2b b v qb vŽ .1 2 1 3 3

2a b b a b2 1 2 1 22a b ya b b y q3 1 1 1 3a b a b1 2 2 1 2 2y q
22 2 (b y4b b2 1 3

q 2 2 2 2 4b q b y2b b v qb vŽ .1 2 1 3 3

2a b b a b2 2 3 3 22a b ya b b y q1 3 3 1 3a b a b2 3 3 2 2 2y q
22 2 (b y4b b t2 1 3 2 yq v PvPe Pu tŽ .t 012 2 2 2 4b q b y2b b v qb vŽ .1 2 1 3 3

2a b b a b2 1 2 1 22a b ya b b y q3 1 1 1 3a b a b1 2 2 1 2 2y y
22 2 (b y4b b2 1 3

q 2 2 2 2 4b q b y2b b v qb vŽ .1 2 1 3 3

2a b b a b2 2 3 3 22a b ya b b y q1 3 3 1 3a b a b2 3 3 2 2 2y y
22 2 (b y4b b t2 1 3 2 yq v PvPe Pu t . A14dŽ . Ž .t 022 2 2 2 4b q b y2b b v qb vŽ .1 2 1 3 3

To obtain a response to a sine-modulated step function, we add the step response to the calculated response:

DF sDF qDF A15Ž .msmp msin m1

Ž .where it is presumed that both responses have already been scaled: DF by R and the amplitude of sine-shaped E t , andmsin
Ž .DF by R and the amplitude of step-shaped E t . To get a response to a sine-modulated pulse with duration T , we simplym1 1

Ž .have to take the response given by Eq. A15 , and subtract an equivalent response at tsT :1

DF t sDF t Pu t yDF tyT Pu t . A16Ž . Ž . Ž . Ž . Ž . Ž .m msmp 0 msmp 1 T1

Ž .The response to a train of sine-modulated pulses is then calculated using the principle from Eq. A8 .

A.6. Possible simplifications of the calculated expressions

Using a computer, one can easily evaluate the expressions given in the preceding subsections. Nevertheless, when
realistic values of the parameters are considered, these suggest several possibilities for simplifications. Firstly, membrane
conductivity is by several orders of magnitude smaller compared to the conductivities of the cytoplasm and the extracellular

Ž .medium see Table 1 :

l <l , l . A17Ž .m i o
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Secondly, membrane thickness is about a thousand-fold smaller than cell radius:

d<R A18Ž .
Ž . Ž . Ž .One generally justifiable simplification emerges from a thorough analysis of expressions in Eqs. A6d , A9d , A12d and

Ž . Ž .A14d . Using realistic values of the parameters see Table 1 , it shows that the amplitude of the exponential term involving
Ž .t is always much smaller at least four orders of magnitude than the amplitude of the term involving t . Thus, the partial2 1

response pertaining to t can be neglected without serious consequences, giving the system an apparent first-order nature.2
Ž . Ž . Ž .Based on Eqs. A17 and A18 , some terms in the expressions describing a , a , a , b , b , and b , given by Eqs. 9a ,1 2 3 1 2 3

Ž . Ž . Ž . Ž . Ž .9b , 9c , 9d , 9e and 9f , appear negligible in comparison to the others. One should, however, be very careful when
deciding to eliminate these terms. Since the apparently largest terms often cancel out after a full expansion of the
expression, the seemingly negligible terms that include d, or l , sometimes play a major role in determination of them

Ž .response. An example of an invalid simplification can be illustrated using expression for t , given by Eq. A6e ; if1

expressions describing b , b and b are primarily modified by eliminating the terms involving l , and then inserted into1 2 3 m
Ž .Eq. A6e , the computation yields t s0, which is obviously wrong. If, however, all the terms are retained until the1

expression is fully expanded, and the approximations are applied to this expression, one obtains a solution which yields a
Ž .more plausible estimation of t due to the size of the expanded expression, we avoid its explicit formulation here .1

Commonly, an additional postulation is used that both the extracellular medium and the cytoplasm are purely conductive:

´ s´ s0. A19Ž .i o

As all the terms involving ´ and ´ are left out, the size of the expression is vastly reduced. Though in case of a generali o

system, the appropriateness of this procedure may be questioned, when used with the parameter values representative for a
cell suspension, the resulting expression

R´ l q2lŽ .m i o
t s A20Ž .1 Rl l q2l q2 dl lŽ .m i o i o

Ž .can be shown to never deviate more than 2% from the complete expression given by Eq. A6e .
Ž .Expressing ´ rd as membrane capacitance c yields the well-known expression for the time constant of them m

w xmembrane as given by Pauly and Schwan 11 :

Rcm
t s . A21Ž .1 2l l Ri o

q lm
l q2l di o

References

w x Ž .1 K.R. Robinson, The responses of cells to electrical fields, J. Cell Biol. 101 1985 2023–2027.
w x Ž .2 P. Marszalek, D.S. Liu, T.Y. Tsong, Schwan equation and transmembrane potential induced by alternating electric field, Biophys. J. 58 1990

1053–1058.
w x Ž .3 T.Y. Tsong, Electroporation of cell membranes, Biophys. J. 60 1991 297–306.
w x Ž .4 W. Krassowska, J.C. Neu, Response of a single cell to an external electric field, Biophys. J. 66 1994 1768–1776.
w x Ž .5 E. Neumann, A.E. Sowers, C.A. Jordan Eds. , Electroporation and Electrofusion in Cell Biology, Plenum, New York, 1989.
w x Ž .6 D.C. Chang, B.M. Chassy, J.A. Saunders, A.E. Sowers Eds. , Guide to Electroporation and Electrofusion, Academic Press, San Diego, 1992.
w x Ž . Ž .7 T.K. Wong, E. Neumann, Electric field mediated gene transfer, Biochem. Biophys. Res. Commun. 107 2 1982 584–587.
w x8 M.M.S. Lo, T.Y. Tsong, M.K. Conrad, S.M. Strittmatter, L.D. Hester, S. Snyder, Monoclonal antibody production by receptor-mediated electrically

Ž .induced cell fusion, Nature 310 1984 792–794.
w x Ž .9 M. Okino, H. Mohri, Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors, Jpn. J. Cancer Res. 78 1987

1319–1321.
w x10 T. Kotnik, F. Bobanovic, D. Miklavcic, Sensitivity of transmembrane voltage induced by applied electric fields – a theoretical analysis,´ ˇ ˇ

Ž .Bioelectrochem. Bioenerg. 43 1997 285–291.
¨w x11 H. Pauly, H.P. Schwan, Uber die Impedanz einer Suspension von kugelformigen Teilchen mit einer Schale, Z. Naturforsch., B: Anorg. Chem., Org.¨

Ž .Chem. 14 1959 125–131.
ˇw x Ž .12 D. Semrov, D. Miklavcic, Calculation of the electrical parameters in electrochemotherapy of solid tumors in mice, Comput. Biol. Med. in press .ˇ ˇ

w x13 R.M. Fano, L.J. Chu, R.B. Adler, Electromagnetic Fields, Energy, and Forces, Wiley, New York, 1960.
w x14 R.V. Churchill, Operational Mathematics, McGraw-Hill, New York, 1972.
w x15 M. Hibino, H. Itoh, K. Kinosita Jr., Time courses of electroporation as revealed by submicrosecond imaging of transmembrane potential, Biophys. J.

Ž .64 1993 1789–1800.
w x16 G. Fuhr, F. Geissler, T. Muller, R. Hagedorn, H. Torner, Differences in the rotation spectra of mouse oocytes and zygotes, Biochim. Biophys. Acta¨

Ž .930 1987 65–71.



( )T. Kotnik et al.rBioelectrochemistry and Bioenergetics 45 1998 3–1616

w x17 W.M. Arnold, R.K. Schmutzler, A.G. Schmutzler, H. van der Ven, S. Al-Hasani, D. Krebs, U. Zimmermann, Electrorotation of mouse oocytes:
Ž .single-cell measurements of zona-intact and zona-free cells and of the isolated zona pellucida, Biochim. Biophys. Acta 905 1987 454–464.

w x Ž .18 K. Asami, T. Hanai, N. Koizumi, Dielectric properties of yeast cells, J. Membr. Biol. 28 1976 169–180.
w x19 C.M. Harris, D.B. Kell, The radio-frequency dielectric properties of yeast cells measured with a rapid, automated, frequency-domain dielectric

Ž .spectrometer, Bioelectrochem. Bioenerg. 11 1983 15–28.
w x Ž .20 R. Holzel, I. Lamprecht, Dielectric properties of yeast cells as determined by electrorotation, Biochim. Biophys. Acta 1104 1992 195–200.¨
w x21 P.R.C. Gascoyne, R. Pethig, J.P.H. Burt, F.F. Becker, Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia

Ž .cells studied by dielectrophoresis, Biochim. Biophys. Acta 1146 1993 119–126.
w x22 X. Hu, W.M. Arnold, U. Zimmermann, Alterations in the electrical properties of T and B lymphocyte membranes induced by mitogenic stimulation:

Ž .activation monitored by electrorotation of single cells, Biochim. Biophys. Acta 1021 1990 191–200.
w x Ž .23 D. Wicher, J. Gundel, Electrorotation of multi- and oligolamellar liposomes, Bioelectrochem. Bioenerg. 21 1989 279–288.
w x Ž .24 C. Grosse, H.P. Schwan, Cellular membrane potentials induced by alternating fields, Biophys. J. 63 1992 1632–1642.
w x Ž .25 G. Fuhr, R. Glaser, R. Hagedorn, Rotation of dielectrics in a rotating electric high-frequency field, Biophys. J. 49 1986 395–402.
w x Ž .26 K.V.I.S. Kaler, T.B. Jones, Dielectrophoretic spectra of single cells determined by feedback-controlled levitation, Biophys. J. 57 1990 173–182.
w x Ž .27 J. Gimsa, R. Glaser, G. Fuhr, in: W. Schutt, H. Klinkmann, I. Lamprecht, T. Wilson Eds. , Physical Characterization of Biological Cells, Verlag

Gesundheit, Berlin, 1991, pp. 295–323.
w x28 B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell, Garland Publishing, New York, 1994.
w x29 E. Tekle, R.D. Astumian, P.B. Chock, Selective and asymmetric molecular transport across electroporated cell membranes, Proc. Natl. Acad. Sci.

Ž .U.S.A. 91 1994 11512–11516.
w x30 S. Kakorin, S.P. Stoylov, E. Neumann, Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles, Biophys.

Ž .Chem. 58 1996 109–116.
w x Ž .31 A.E. Sowers, in: E. Neumann, A.E. Sowers, C.A. Jordan Eds. , Electroporation and Electrofusion of Cell Membranes, Plenum, New York, 1989, pp.

229–256.
w x Ž .32 T.C. Tomov, Quantitative dependence of electroporation on the pulse parameters, Bioelectrochem. Bioenerg. 37 1995 101–107.
w x33 U. Pliquett, E.A. Gift, J.C. Weaver, Determination of the electric field and anomalous heating caused by exponential pulses with aluminum electrodes

Ž .in electroporation experiments, Bioelectrochem. Bioenerg. 39 1996 39–53.
w x Ž .34 D.C. Chang, Cell poration and cell fusion using an oscillating electric field, Biophys. J. 56 1989 641–652.
w x35 D.C. Chang, P.Q. Gao, B.L. Maxwell, High efficiency gene transfection by electroporation using a radio-frequency electric field, Biochim. Biophys.

Ž .Acta 1092 1991 153–160.
w x Ž .36 K.M. Merz Jr., B. Roux, in: K.M. Merz Jr., B. Roux Eds. , Biological Membranes: A Molecular Perspective from Computation and Experiment,

Birkhauser, Boston, 1996, p. viii.¨
w x Ž .37 J.C. Weaver, Y.A. Chizmadzhev, Theory of electroporation: a review, Bioelectrochem. Bioenerg. 41 1996 135–160.
w x38 H. Frohlich, Theory of Dielectrics, Clarendon Press, Oxford, 1986.¨
w x39 P.R.C. Gascoyne, F.F. Becker, X.B. Wang, Numerical analysis of the influence of experimental conditions on the accuracy of dielectric parameters

Ž .derived from electrorotation measurements, Bioelectrochem. Bioenerg. 36 1995 115–125.


