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Effective Conductivity of a Suspension of Permeabilized Cells:
A Theoretical Analysis

Mojca Pavlin and Damijan Miklavčič
University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

ABSTRACT During the electroporation cell membrane undergoes structural changes, which increase the membrane
conductivity and consequently lead to a change in effective conductivity of a cell suspension. To correlate microscopic
membrane changes to macroscopic changes in conductivity of a suspension, we analyzed the effective conductivity
theoretically, using two different approaches: numerically, using the finite elements method; and analytically, by using the
equivalence principle. We derived the equation, which connects membrane conductivity with effective conductivity of the cell
suspension. The changes in effective conductivity were analyzed for different parameters: cell volume fraction, membrane and
medium conductivity, critical transmembrane potential, and cell orientation. In our analysis we used a tensor form of the
effective conductivity, thus taking into account the anisotropic nature of the cell electropermeabilization and rotation of the cells.
To determine the effect of cell rotation, as questioned by some authors, the difference between conductivity of a cell suspension
with normally distributed orientations and parallel orientation was also calculated, and determined to be\10%. The presented
theory provides a theoretical basis for the analysis of measurements of the effective conductivity during electroporation.

INTRODUCTION

Research on the interaction of electric pulses and cells led

to different biomedical applications. New methods such as

electrofusion and electropermeabilization are not only use-

ful applications but can also reveal basic properties of cells

and tissues. With the theories that explain dielectric and

conductive properties of cell suspensions, we can interpret

the experiments performed on a macroscopic level to obtain

knowledge of biophysical processes on a microscopic level.

When an electric field is applied to a cell, a nonuniform

transmembrane potential (TMP) is induced on the exposed

cell. If the induced TMP is large enough, i.e., above the criti-

cal value (TMPc), cell membrane becomes permeabilized in

a reversible process called electropermeabilization, thus

allowing easier transport of ions and entrance of molecules

that otherwise cannot easily cross the cell membrane

(Neumann et al., 1982, 1989; Zimmermann, 1982; Weaver

and Chizmadzhev, 1996; Jaroszeski et al., 1999; DeBruin and

Krassowska, 1999a,b; Ryttsen et al., 2000). The value of

TMPc at the room temperature was reported to be between 0.2

and 1 V (Zimmermann, 1982, 1996; Tsong, 1991; Hibino

et al., 1993; Teissie and Rols, 1993) depending also on the

pulse parameters and experimental conditions (Miklavčič

et al., 2000). Further increase of the electric field causes

irreversible membrane permeabilization and cell death.

Electropermeabilization is of interest in a variety of ap-

plications specially for gene transfection, electrochemother-

apy (Neumann et al., 1982; Sukharev et al., 1992; Jaroszeski

et al., 1999; Mir, 2000; Serša et al., 2000), study of forces on

cells undergoing fusion (Zimmermann, 1982), and models of

cardiac tissue response to defibrillating currents. With the

development of the electropermeabilization technique, theo-

retical aspects of the conductivity of cell suspensions are

becoming of interest. Electropermeabilization leads to the

increase of the membrane permeability for ions and

molecules; however, until now the mechanism of the

electropermeabilization has not been fully explained. The

theory of electroporation assumes that induced TMP triggers

the formation of structural changes in the membrane electro-

pores (Zimmermann, 1982; Neumann et al., 1982; Weaver

and Chizmadzhev, 1996). These changes in membrane cause

increased membrane conductivity which consequently leads

to a change in bulk conductivity, as has already been shown

experimentally in cell suspensions (Kinosita and Tsong,

1979) and on cell pellets (Abidor et al., 1993, 1994).

Indirectly, by measuring the transmembrane potential,

changes in membrane conductivity of sea urchin eggs were

also observed (Hibino et al., 1991). It was suggested that such

an increase in bulk or tissue could be used for measuring in

vivo the changes of the conductance of tissue due to per-

meabilization (Davalos et al., 2000, 2002).

Only a few studies have dealt with the calculation and

measurement of the change in the effective conductivity.

Abidor and co-authors (Abidor et al., 1993, 1994) measured

changes of the resistance of cell pellets due to electro-

permeabilization and the drop of the resistance was observed

after the application of high-voltage pulses. Similarly, in

another study (Kinosita and Tsong, 1979), authors observed

an increase of the effective conductivity of suspension of

erythrocytes with electric fields above 150 kV/m. These

changes depended on the field strength, pulse duration, and

conductivity of the extracellular medium. The conductivity of

the suspension returned to its initial value after the pulses but

increased again in the range of 10 s due to the diffusion of the

ions from the cell. Authors estimated membrane conductance
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Gm to be between 10S/cm2 and 100S/cm2. In these studies the

effective conductivity was measured by impedance measure-

ments, or by measuring current and voltage during high-

voltage pulse or during measuring low voltage pulse applied

after the high-voltage electroporative pulse. However, other

authors (Zimmermann, 1982) questioned these results since

the orientation of cells in dense suspensions was not taken

into consideration. Indeed it was shown theoretically and

confirmed experimentally (Zimmermann, 1982; Neumann

et al., 1989) that a cell laying in an AC electric field starts to

rotate in the presence of another cell due to the interactionwith

neighboring cells. Additionally, other mechanisms such as

thermal relaxation and cell anisotropy cause cell rotation.

Therefore, rotation also should be taken into account, es-

pecially in a dense suspension where many cells are inter-

acting with each other.

In this article we present a theory, which describes how the

effective (bulk) conductivity of a suspension of permeabi-

lized cells depends on parameters such as a cell’s volume

fraction, conductivity of the medium, membrane conductiv-

ity, critical TMP, and cell orientation. We calculated the

effective conductivity of a suspension of permeabilized cells

by two different approaches: a numerical one by using a finite

elements method (FEM), and an analytical one by using the

equivalence principle. Both approaches include the aniso-

tropic nature of the cell electropermeabilization, and also

takes into account the orientation of cells. With these two

approaches it is thus possible to estimate the changes of the

membrane conductivity from the measurements of the

effective conductivity of a cell suspension.

METHODS

We analyzed the effective conductivity of a suspension of permeabilized

cells analytically and numerically. Both approaches are connected with the

equivalence principle and Maxwell equation as shown in Fig. 1. Maxwell

equation is a mean-field approximation, which describes how the

conductivity of one particle (cell) sp is connected with the effective

conductivity s of many particles dispersed in external medium. Since

a biological cell is composed of different parts (membrane, cytoplasm, . . .)

having different specific conductivities we have to use the equivalence

principle; this principle states that a nonhomogeneous particle in the electric

field can be replaced with a sphere having the equivalent conductivity sp,

neglecting higher than dipole terms. Therefore, analytically the equivalent

conductivity of a single cell was obtained first, and then effective con-

ductivity from Maxwell equation was obtained, whereas numerically we

directly calculated the effective conductivity of a suspension and then the

equivalent conductivity of a single cell was calculated.

As already mentioned, cells in suspension tend to rotate due to different

forces. When cell is permeabilized, the conductivity becomes anisotropic

(Fig. 1, left picture), so the orientation of the cell with respect to the electric

field becomes important. For this reason the effect of a cell orientation on

effective conductivity of a cell suspension was studied as well.

Numerical calculations

We built a finite-element model of a suspension of permeabilized cells. To

model a homogeneous cell suspension, cells were organized into a simple-

cubic lattice, since we showed previously that the effective conductivity is

similar for different cubic lattices (Pavlin et al., 2002b).

An idealized model of a biological cell is a sphere consisting of a cell

cytoplasm si surrounded by a very thin, low conducting membrane, sm
0,

which is placed in a conductive medium, se. A model of a permeabilized cell

is shown in Fig. 2. The brighter shaded part of the membrane represents the

area of the membrane that has increased membrane conductivity, sm, and uc
denotes the critical angle of electroporation, where the induced TMP

exceeds the critical value TMPc.

It was shown experimentally (Gabriel and Teissie, 1998) that parameter

uc depends on the applied electric field according to equation: TMPc ¼ 3/2

E0R cos uc, while the conductivity of the permeabilized area, sm, depends

both on electric field strength and on pulse duration (Hibino et al., 1993). In

our models permeabilization is assumed to be symmetrical on both poles

although some conductance asymmetry was observed (Hibino et al., 1993).

We did not include this effect in our models since large asymmetry in

permeabilization which was assumed by some authors to be due to the

resting potential (Zimmerman, 1982; Tekle et al., 1990; Gabriel and Teissie,

1997) occurs only very near the TMPc (DeBruin and Krassowska, 1999a,b;

Valič et al., 2003).

The thickness of a cell membrane for a typical cell having R ¼ 10 mm is

d ¼ 5 nm, a factor of 2000 smaller than the cell radius. Due to the limited

computer capabilities, the realistic cell was approximated with one having an

FIGURE 1 The two approaches, numerical and analytical, used to connect

changes in membrane conductivity, sm, with changes of effective con-

ductivity, s. The equivalence principle enables us to replace a permeabilized

cell with the anisotropic equivalent conductivity, sp, and the Maxwell

equation connects conductivity of a single cell and effective conductivity of

many cells.

FIGURE 2 The FEM model of a permeabilized cell for parallel

orientation. Brighter shaded part of membrane represents the area of the

membrane with increased membrane conductivity; (sm, uc) denotes the

critical angle of electroporation.
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unrealistic membrane thickness d9 ¼ 0.5 mm and correspondingly higher

membrane conductivity:

s9m ¼ d9

d
sm; (1)

where sm is membrane conductivity at the permeabilized pole cap and s9m is

the scaled membrane conductivity. This approximation is valid under the

assumption that we are interested only in the effective conductivity and not

in the electric field inside the membrane. We verified this approximation by

building a model, which had thickness d9 of 103 smaller, but we did not

observe any change in the effective conductivity. We calculated models for

four different membrane conductivities of the permeabilized area, sm ¼ 13

10�5 S/m, 13 10�4 S/m, 23 10�4 S/m, and 43 10�4 S/m, and two critical

angles, uc ¼ 308 and 458. The values of membrane conductivity except for

the lowest were chosen in range as given in Hibino et al. (1991), where the

potential distribution obtained with fluorescent imaging of permeabilized sea

urchin eggs corresponded to the membrane conductance Gm between 1.8

S/cm2 and 4.3 S/cm2. Because membrane conductivity after the pulses

rapidly decreases due to resealing (Hibino et al., 1991, 1993) also one order

smaller value of membrane conductance Gm ¼ 0.2 S/cm2 (sm ¼ 10�5 S/m)

was used. For the cytoplasm conductivity we used the value reported in

literature (Foster and Schwan, 1986) si ¼ 0.5 S/m. The choice of the

external medium is arbitrary, since it does not affect the cell equivalent

conductivity; therefore we chose the case where the external conductivity is

equal to the internal (se ¼ si ¼ 0.5 S/m). We verified this (results not

shown) by calculating the effective conductivity for lower value (se ¼ 0.123

S/m) and obtained same results.

To study the effect of the cell orientation on the effective conductivity of

a cell suspension, we modeled three extreme cases of orientations, with all

cells having their principal axis z9 oriented by angles: q ¼ 08, 458, and 908

with respect to the external field.

Using the symmetry of a cubic lattice and applying appropriate boundary

conditions we were able to model an infinite cubic lattice with a model of

a unit lattice cell (the part of the lattice which contains the symmetry of the

lattice; see Susil et al., 1998; Pavlin et al., 2002a). In all our models, voltage

V was applied on the face normal to z-axis. Varying A, the length of the unit
cell side, calculations were performed for three cell volume fractions: f ¼
0.1, f ¼ 0.15, and f ¼ 0.3, where f ¼ 4p/3(R/A)3. Numerical calculations

were performed by a commercial finite element modeling software EMAS

(Ansoft, Pittsburgh, PA). Details of this program and FEM method are

described elsewhere (Šemrov and Miklavčič, 1999). The static current flow

analysis was chosen to calculate the current density distribution and the

effective conductivity was obtained using Ohms law: s ¼ j/E.

Analytical calculations—effective medium theory

The exact calculation of the effective (bulk) conductivity of a cell suspension

is theoretically a complex problem especially due to mutual interactions

among the cells. Effective medium theories use average field and neglect

local field effects (Dukhin, 1971; Takashima, 1989) to obtain approximate

analytical solutions. For the effective conductivity s of a dilute suspension,

Maxwell obtained (Maxwell, 1873; Takashima, 1989)

se � s

2se 1s
¼ f

se � sp

2se 1sp

; f ¼ NVc

V
; (2)

wheresp is the conductivity of the particle,se the conductivity of the external

medium, and f is the volume fraction of the particles dispersed in themedium.

Maxwell’s derivation is based on the assumption that the potential of N

spheres is equal to the potential of a sphere having the effective conductivity

s. Maxwell’s equation is exact in the first order of f, hence for dilute

suspensions. However, it was experimentally (Foster and Schwan, 1986) and

numerically shown (Pavlin et al., 2002a) thatMaxwell’s approximation holds

well also for higher volume fractions; i.e., denser suspensions.

Maxwell’s equation can be used to calculate the effective conductivity of

a cell suspension if we replace the cell which is a heterogeneous structure

having membrane conductivity sm and interior si with a homogeneous

sphere having the equivalent conductivity sp (Pauly and Schwan, 1959;

Dukhin, 1971):

sp ¼ sm

2ð1� nÞsm 1 ð11 2nÞsi

ð21 nÞsm 1 ð1� nÞsi

n ¼ ð1� d=RÞ3: (3)

This equation holds for the case when membrane thickness, d, is much

smaller than the cell radius, R, which is valid for biological cells. The exact

solution and more complex expression was first derived by Pauly and

Schwan (1959). From Eq. 3 one can obtain the equivalent conductivity of

a nonpermeabilized cell which is sp ¼ 2 3 10�4 S/m for physiological

values of parameters (sm ¼ 10�7 S/m, si ¼ 0.5 S/m). Thus, for normal

physiological conditions (se¼ 1.2 S/m), cells are practically nonconductive.

This, however, is not true for low (se \ 0.01 S/m) conducting mediums

(Kotnik et al., 1997).

In the case of electroporation, the increase in membrane conductivity due

to the membrane ‘‘pores’’ causes an increase of the cell equivalent

conductivity. The nonuniform induced TMP leads to a nonuniform increase

of membrane conductance (where induced TMP[TMPc) and consequently

to anisotropic equivalent conductivity of a cell sp which can be described as

a diagonal tensor in the coordinate system where the z9-axis is the axis of the
symmetry of a permeabilized cell:

s9p ¼
s? 0 0

0 s? 0

0 0 sjj

2
4

3
5: (4)

The diagonal elements s|| and s? represent values of conductivity when

electric field is parallel or perpendicular to z9. Thus the effective conductivity
of a cell suspension also becomes anisotropic. In the above definition of sp,

we assume that even though membrane has locally increased membrane

conductivity at the pole caps, a cell can still be replaced with the equivalent

conductivity. This is an approximation which takes into account only the

change in the dipole term of the electric field and not higher terms as shown

later on in the analytical derivation of s||.

When electric field is applied, a cell is permeabilized on pole caps so that

at the start of the electroporative pulse all cells are oriented parallel to electric

field as shown in Fig. 2. But due to different mechanisms (AC field,

interactions, and cell nonhomogeneity) cells in a suspension start to rotate.

Therefore, due to anisotropic nature of permeabilization and rotation of cells

we have to consider tissue or suspension of cells as a nonhomogeneous

anisotropic material. In this article we use, unlike in previous approaches, the

anisotropic version of the Maxwell equation (Levy and Stroud, 1997) for the

calculation of the effective conductivity of the mixture of anisotropic cells

dispersed in an isotropic medium. The solution derived in Appendix A gives

the tensor of the effective conductivity depending on the orientation

distribution of the cells over anglesq andfwhereq is the angle between the

principal conductivity axis and the external electric field and the angle f is

the angle of rotation of a cell around the z-axis. In the case where all cells are

oriented parallel to the electric field (z9 || z) the tensor of the effective

conductivity is diagonal; i.e., si 6¼j ¼ 0 and diagonal elements are (Eq. A9):

s11 ¼ s22 ¼ se 1 3fse

ðs? � seÞ
ðs? � seÞð1� f Þ1 3se

;

s33 ¼ se 1 3fse

ðsjj � seÞ
ðsjj � seÞð1� f Þ1 3se

: (5)

Thus the generalized equation reduces to Maxwell equation when replacing

sp with s|| for parallel orientation and sp with s? for perpendicular

orientation.

For cells in a suspension we can assume that all cells are first oriented in

the direction of the applied field since permeabilization occurs at the pole

caps of a cell. But due to different forces, a cell in a suspension starts to
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rotate so we can assume normal distribution of the angles q around angle

q ¼ 0 (z ¼ 1) and a uniform distribution over f:

GðzÞ ¼ 1

g
ffiffiffiffiffiffi
2p

p e
�ðz�1Þ2=2g2

; (6)

where z ¼ cos q and g is the width of the distribution. From this, we obtain

(derivation is given in Appendix A) the effective conductivity in the

direction of the applied field:

s33 ¼ se 1 3fse

A33

ð1� f Þðs? 1 2seÞðsjj 1 2seÞ1 3fseB33

;

(7)

where A33 and B33 are components of the two matrices A and B given in Eq.

A15. This result (Eq. 7) directly applies when conductivity after the pulse is

measured with a second low voltage pulse. However, if cells rotate during

the pulse, then permeabilized area changes and for this particular case

equivalent conductivity should be calculated for lager critical angle.

Nevertheless, calculation of the effective conductivity from equivalent

conductivity is the same as derived above.

Analytical calculations—equivalent conductivity
of a permeabilized cell

In this section we derive an equation which connects cell properties of

a permeabilized cell with the macroscopic effective conductivity of the cell

suspension. We start with the solution of Laplace’s equation for a model of

a permeabilized cell oriented in the direction of the applied field (Fig. 2)

following the calculations of Hibino et al. (1991). All calculations apply to

an isolated cell so that the interactions between the cells are neglected. It was

shown numerically (Pavlin et al., 2002b) that for volume fractions from 0.1

to 0.5, the changes of TMP due to the cell-to-cell interactions are in a range

from 5% to 17%.

For a function g(u) which describes the membrane conductivity, we

assumed that the membrane permeability has a nonzero value for absolute

values of angles under critical angle and zero elsewhere,

gðcos uÞ ¼ go

ðjcos uj � cos ucÞj

ð1� cos ucÞj
jcos uj[cos uc

0 jcos uj# cos uc

;

8<
: (8)

where g0 is the normalized maximal membrane conductance at the two poles

of the cell,

g0 ¼
sm

si

R

d
; n ¼ si

se

: (9)

The parameter j represents functional dependency of the membrane

conductance on the induced TMP. For j ¼ 0 the membrane conductivity

for the angles under the critical value is constant, and for j ¼ 1 we assume

that the conductivity of the permeabilized area is linearly proportional to the

induced TMP. Experiments in which the authors (Gabriel and Teissie, 1998)

used rapid fluorescent imaging to measure cell permeabilization indicate that

membrane conductivity is constant in the area above the TMPc. In our

calculations we used j¼ 0 and j¼ 1 even though this procedure allows other

functional dependencies of g(u) ( j[ 0).

In Appendix B, we derive the potential of a permeabilized cell which is

oriented in the direction of the applied external electric field for a given value

of uc, g0, and n,

Ci ¼ c0 1 +
‘

n¼1

cnðr9ÞnPnðcos uÞ
n

;

Ce ¼ r91
1

2r9
2

� �
P1ðcos uÞ1 n +

‘

n¼1

cnPnðcos uÞ
ðn1 1Þðr9Þn11 ; (10)

where the Pn values are the Legendre polynomials. The cn coefficients are

calculated for finite number n ¼ N, thus reducing an infinite system of

equations to a finite one. For high enough N (in our case N ¼ 30), we get

negligible error resulting from this approximation. Eq. 10 is an analytical

solution for the induced potential of a permeabilized cell in external electric

field from which the induced TMP can be obtained

TMP=E0R ¼ CeðRÞ �CiðRÞ: (11)

In Fig. 3 the dependence of the induced TMP on the angle u and the

parameter g0 (maximum membrane conductivity) is shown. Fig. 3 can be

interpreted in the following way: when the induced TMP reaches the critical

value (TMPc), the membrane is permeabilized and starts to conduct ionic

current. The membrane conductivity immediately rises to a level which is

sufficient to keep the TMP below the critical value (g0 [ 0.4). By fitting

experimental data of fluorescent imaging to this mathematical model, Hibino

and co-workers (Hibino et al., 1991, 1993) determined the values of g0, and

by this, of sm.

Up to now we have assumed that uc is constant. One possibility is also

that uc and with this the area of permeabilization could expand during the

pulse. Even though this was not observed for transport of large molecules

where uc did not change (Gabriel and Teissie, 1997), we still have to

consider uc as an average value, which determines the area through which

the transport of ions occurs.

We used the solution of Laplace equation to derive an equation for the

equivalent conductivity of a permeabilized cell. Similarly as in deriving the

Maxwell equation, we assume that potential of permeabilized cell Ce given

in Eq. 10 is equal to the potential of an equivalent sphere having the

conductivity sp, and hence,

Ce ¼ r91
1

2r92

� �
P1ðcos uÞ1 n +

‘

n¼1

cnPnðcos uÞ
ðn1 1Þðr9Þn11 ’ Ceq

¼ r91
se � sp

2se 1sp

1

r9
2

� �
P1ðcosqÞ: (12)

Neglecting higher multipole terms, we obtain the following equation for

sp and the effective conductivity s:

1

2
ð1� nc1Þ ¼

se � sp

2se 1sp

¼ 1

f

se � s

2se 1s
; (13)

FIGURE 3 Dependence of the induced TMP on the angle u and the pa-

rameter g0 (membrane conductivity) for n ¼ si/se ¼ 1, uc ¼ 458, and j ¼ 0.

TMP is normalized to electric field E0 and radius of the cell R. For g0¼ 0, we

obtain the static Schwan equation, TMP/E0R ¼ cos u.
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where c1 is the dipole term from the Eq. 10 and n ¼ si/se. Eq. 13 is an

analytical solution that connects membrane conductivity with the effective

conductivity of many cells. In this equation, sp ¼ s||, since the cell is

oriented in the direction of the electric field. To obtain s? the derivation

should be extended for perpendicular orientation using series expansion with

Legendre polynomials and spherical functions; however, all the procedure is

analogous as for s||. Eq. 13 uses a dipole approximation since it neglects

higher multipole terms. It directly connects membrane conductivity with the

equivalent conductivity of a cell and via Maxwell’s equation with the

effective conductivity of a cell suspension. With Eq. 13 it is thus possible to

calculate the effective conductivity of a cell suspension for given f, sm, si,

se, and uc; and vice versa, the membrane conductivity from the effective

conductivity of a cell suspension.

RESULTS

We calculated the effective conductivity of a suspension of

permeabilized cells numerically by using a FEM method and

analytically by using equivalence principle. Analytically we

first calculated the component of the equivalent conductivity

of a permeabilized cell for parallel orientation, s||, from

which the effective conductivity s of a cell suspension can

be obtained. With FEM method, however, we directly

calculated the effective conductivity, and then using the

Maxwell equation, we obtained the equivalent conductivity

as shown in Fig. 1.

In Table 1 we compare the results for cell equivalent

conductivity s|| calculated analytically with Eq. 13 and

numerically for given uc and sm. In our numerical study, we

calculated models of cell suspension of three different

volume fractions of cells: f¼ 0.1, f¼ 0.15, and f¼ 0.3. From

the FEM result for the effective conductivity, s/se, we

obtained the equivalent conductivity using the Maxwell

equation (Eq. 2). Since s|| depends only on cell parameters

and not on the volume fraction, the differences are due to

dipole approximation and numerical error. Therefore, the

numerical results for the three volume fractions were av-

eraged to obtain hs||i for comparison with analytical calcu-

lations and we can see that the analytical results are in good

agreement with the numerical results. Both approaches use

dipole approximation; therefore, they are exact in the first

order of f. In Table 1 we also compare the analytical results

for the case where conductivity of the permeabilized area is

constant ( j ¼ 0) and proportional to the induced TMP (j ¼
1), and we can observe that there is no significant difference

in the equivalent conductivity.

In Fig. 4, the results for normalized effective conductivity,

s/se, of the FEM models (symbols) are compared to s/se

(se ¼ 0.5 S/m) calculated with Maxwell’s equation (lines)
for the analytical values of s|| for parameters sm and uc given

in Table 1. Again, it can be seen that the FEM results for

the equivalent conductivity s|| are in good agreement with

the analytical results, which means that a permeabilized cell

can be replaced with a sphere having the equivalent con-

ductivity calculated using Eq. 13.

Effect of different parameters on the effective
conductivity of a cell suspension

We further investigated how the relative change in the

effective conductivity depends on the cell permeabilization

parameters. Fig. 5, a and b, summarize how the relative

change of conductivity ((s � s0)/s0) depends on the volume

fraction (f), membrane conductance (sm), critical angle (uc),

and conductivities of the external and the internal medium

(a) se ¼ 0.5si and (b) se ¼ 2si, where s0 is the initial

effective conductivity of a cell suspension before electro-

permeabilization, s0 ¼s (sm ¼ 0).

As expected, the relative change of the effective

conductivity is larger for higher volume fractions and higher

membrane conductivity. It can be also seen that when the

membrane conductivity drops for one order of magnitude,

for example, due to resealing, the relative change of the

effective conductivity for f\ 0.3 is\5%, which means that

very quickly after the end of a pulse the conductivity of a cell

suspension drops to the initial value, which also agrees with

what was experimentally observed (Abidor et al., 1993;

Hibino et al., 1993).

The comparison of Fig. 5, a and b, shows that ratio of se/

si also changes the results significantly, and that for low

conductive medium the changes in relative conductivity are

more pronounced. However, in such a case, when se\ si,

one has to consider also the effect of the leakage of the ions

from the cell as shown in Kinosita and Tsong (1979), and its

TABLE 1 Comparison of the analytical results for the equivalent cell conductivities, sp, for the parallel orientation, s||, with the

numerical results for the calculated parameters

R ¼ 10 mm, d9 ¼ 0.5 mm,

si ¼ 0.5 S/m

FEM s|| S/m

( f ¼ 0.1)

FEM s|| S/m

( f ¼ 0.15)

FEM s|| S/m

( f ¼ 0.3)

FEM*

hs||i S/m
Analyt.y s|| S/m

j ¼ 0

Analyt.y s|| S/m

j ¼ 1

uc ¼ 308 sm ¼ 1 3 10�5 S/m 0.007 0.012 0.006 0.008 0.005 0.007

uc ¼ 458 sm ¼ 1 3 10�5 S/m 0.012 0.012 0.015 0.013 0.012 0.013

uc ¼ 308 sm ¼ 1 3 10�4 S/m 0.054 0.060 0.054 0.056 0.056 0.056

uc ¼ 458 sm ¼ 1 3 10�4 S/m 0.094 0.099 0.094 0.096 0.098 0.100

uc ¼ 308 sm ¼ 2 3 10�4 S/m 0.090 0.088 0.084 0.087 0.093 0.093

uc ¼ 458 sm ¼ 2 3 10�4 S/m 0.152 0.151 0.151 0.151 0.157 0.155

uc ¼ 308 sm ¼ 4 3 10�4 S/m 0.135 0.133 0.128 0.132 0.134 0.139

uc ¼ 458 sm ¼ 4 3 10�4 S/m 0.219 0.219 0.218 0.219 0.226 0.216

*hs||i ¼ 1/3[s|| ( f ¼ 0.1) 1 s|| ( f ¼ 0.15) 1 s|| ( f ¼ 0.3)].
yCalculated with Eq. 13.
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contribution to the increased bulk conductivity especially for

low conductive media. Nevertheless, time constant for

diffusion of ions (milliseconds) is usually longer then the

pulse duration (10 ms – 1 ms) so that diffusion can be

neglected in the case of relatively short pulses.

Effect of cell orientation on the effective
conductivity of a cell suspension

Up to now, we assumed that all cells are oriented with the axis

of symmetry parallel to the external electrical field, since,

during a DC pulse and low frequency AC pulses, this is the

orientation having the minimum free energy, and is thus the

stable orientation. The orientation of cells in the electric field

can change either due to cell rotation caused by the forces,

which act on a cell in a suspension, or due to the change of

electric field orientation by using different electrodes. For

this reason we calculated the effective conductivity using the

generalizedMaxwell equation given in the theoretical section

for a given orientation distribution. In the special case of

a random orientation distribution, the effective conductivity

is a scalar given by Eq. A10. For the extreme case where all

cells are oriented perpendicular to the external electrical field

(s ¼ s11), we obtained 10–20% decrease of the effective

conductivity compared to the parallel orientation (s ¼ s33),

and for the values for random orientation, we obtained that

the effective conductivity is approximately s ¼ (s11 1 s33)/

2.

However, after the pulse cells start to rotate due to

different relaxation mechanisms and forces, for this case

we therefore assumed normal distribution over the angles q

around angle q ¼ 0 as defined in Eq. 6. Normal distribution

is a good approximation in a case of many collaborating

processes where all distributions limit to normal distribution.

In Fig. 6 the effective conductivity in the direction of the

applied field (s33) is calculated for different volume fractions

with Eq. 7. For g ¼ 0.5 (majority of cell orientations are

between q ¼ �p/3 and q ¼ p/3), we obtained, using Eq. 7,

the drop of the effective conductivity for ;10%. Thus, this

effect can be neglected.

We have to stress that this applies only for the case when

the second pulse is a low-voltage measuring pulse. If the

second pulse is above the threshold value for permeabiliza-

tion, additional area is permeabilized that is not considered in

our calculations.

DISCUSSION AND CONCLUSIONS

The objective of our work was to calculate the effective

(bulk) conductivity of a cell suspension for different pa-

FIGURE 4 The results for normalized effective conductivity s/se of the

FEM models (symbols) are compared to the analytical results (lines) for

a case of a parallel orientation (q ¼ 0). Each line represents the effective

conductivity calculated from the theoretical value of sp using Eq. 13, which

we derived analytically.

FIGURE 5 The relative change of conductivity, (s–s0)/s0, is plotted

against cell volume fraction for (a) se ¼ 0.5si and (b) se ¼ 2si for different

membrane conductivities and critical angles, where s0 is initial conductivity

of a suspension of cells before electropermeabilization (s0 ¼ s (sm ¼ 0)).
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rameters: cell volume fraction, membrane conductivity, cy-

toplasm and medium conductivity, critical transmembrane

potential (critical angle), and cell orientation by taking into

account also the ‘‘anisotropic’’ nature of membrane per-

meabilization. We pursued this objective by choosing two

different approaches: a numerical and an analytical one.

Both consider a permeabilized cell as a particle having

anisotropic conductivity. Using the analytical solution for

the potential of a permeabilized cell in an electric field, we

derived the equation for the equivalent conductivity of the

cell using the equivalence principle. Then the effective

conductivity of a cell suspension was calculated using

a generalized Maxwell’s equation, whereas numerically, the

effective conductivity was calculated directly. The compar-

ison of numerical and analytical calculations showed good

agreement, which means that a permeabilized cell can be

replaced with a sphere having the equivalent conductivity as

derived in Eq. 13.

We analyzed how the relative change of the effective

conductivity (s – s0)/s0 depends on the cell volume

fraction, f; membrane conductivity, sm; critical angle, uc;

and conductivities of the external medium and cytoplasm, se

and si, respectively. We showed that relative changes of the

effective conductivity strongly depend on the value of the

external conductivity. For the membrane conductivities

being 1 3 10�4 � 4 3 10�4 S/m and for volume fractions

being typically 0.05–0.4, the relative change (s – s0)/s0 is

between 5% and 30%.

Furthermore, the effect of cell orientation on the effective

conductivity of a cell suspension was analyzed, which was

not studied in previous reports. Using generalized Maxwell

theory for the effective conductivity of anisotropic particles

that can rotate, we calculated the results for the limiting

cases: parallel, perpendicular, and random orientation.

For cells in a suspension, we assumed that during a DC

pulse they are preferentially oriented in the most stable

position which is the parallel orientation. For this reason, we

calculated the effective conductivity after the pulse, using

a normal distribution over angles q around q ¼ 0. By this

we evaluated that for cells in a suspension, the effective

conductivity calculated for parallel orientation is decreased

\10% due to cell rotation after the pulse.

In our theoretical analysis we used several limitations.

Calculations were performed only for spherical shape of cells

even though a lot of cells, such as erythrocytes, bacteria, . . . ,
are not spherical. However, FEM calculations can be ex-

tended also for the calculation of the effective conductivity

of a suspension of spheroidal cells or even cells of irregular

shapes. We also calculated the difference in relative change

of the effective conductivity due to the shape of ellipsoidal

cells (results not shown here) and obtained that, for

ellipsoidal cells having ratio between the two radii [0.9,

the difference is\2%.

We have limited our calculations to a DC case, which

holds also for the frequencies under the relaxation frequency,

which is;1 MHz for low-conductive membranes. However,

both the analytical and numerical calculation can also be

extended to a general AC case by using generalized con-

ductivity, which also takes into account dielectric proper-

ties (Pavlin et al., 2002a).

The presented analysis directly applies for a cell suspen-

sion; therefore, we limited numerical calculations to volume

fractions of 0.3, which corresponds to a dense suspension.

We did not extend our numerical calculations to higher

volume fractions, since for an FEM model of a tissue it

would be important to include specific geometry of cells and

other structures of a specific tissue, which is beyond the

scope of this article. However, because it was shown that the

Maxwell equation is also valid for dense suspensions, we can

calculate the effective conductivity for higher volume

fractions, as presented in Fig. 5.

Both analytical and numerical calculations are based on the

concept of equivalency and are thus approximate. We made

approximations on two different levels. First, the electric field

of a permeabilized cell laying in the external field is a

multipole field, and therefore the equivalence principle is

an approximation also for an isolated cell since we neglect

higher multipoles terms (cn values). Second, in a many-

particle system such as a cell suspension, an electric field is

a sum of multipole fields, and thus Maxwell’s equation is

exact only in the first order of f (for dilute suspensions).

However, in previous studies it was shown that Maxwell’s

equation is also a good approximation for higher volume

fractions (Foster and Schwan, 1986) and increasedmembrane

conductivity (Pavlin et al., 2002a). By comparing the

analytical results to numerical results, we conclude that

the Maxwell equation can also be used for the calculation of

FIGURE 6 Effect of cell rotation around parallel orientation. Effective

conductivity in the direction of the applied field, s33, is calculated with Eq. 7

for a uniform distribution of angles f and normal distribution (Eq. 6) of the

angles q around angle q ¼ 0 (z ¼ 1), z ¼ cos q. Here, g is the width of the

distribution, and s33
0 is the effective conductivity when all cells are oriented

parallel to the applied electric field, s33
0 ¼ s33(g ¼ 0).
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the effective conductivity of a suspension of permeabilized

cells.

By considering normal distribution of orientations of cells

in a suspension, we showed that rotation of cells due to

different relaxation mechanisms decreases the effective

conductivity only to a smaller extent for DC fields for the

case where a second low voltage pulse is applied. In general

the theory can be applied for any given orientation dis-

tribution and also for cells in tissue where electric field ori-

entation is changed. Thus, providing that the TMPc, and by

this, uc, is defined, our theory provides a tool to estimate the

changes in membrane conductivity based on the measure-

ments of bulk effective conductivity of permeabilized cells.

Unlike previous approaches, where the electric cell

properties were considered as isotropic scalar quantities,

our model introduces the effective cell conductivity as

a tensor that also takes into account the nonuniform

electropermeabilization of the cell membrane. Although the

theoretical analysis presented in the article directly applies to

cell suspensions in a DC field, it can readily be extended

to more concentrated cell samples or tissues in DC or

alternating fields. Thus it provides a theoretical basis for the

analysis of measurements of the effective conductivity

during electroporation which could be used as a way to

online monitoring of cell permeabilization.

APPENDIX A

Here we present derivation of generalized Maxwell theory for calculation of

the effective conductivity for mixture of anisotropic particles dispersed in

isotropic medium (Levy and Stroud, 1997). We assume that a permeabilized

cell has an anisotropic conductivity, which is defined as a tensor sp. Every

cell is oriented differently so that

sp ¼ Mqfs9pM
T

qf
; (A1)

where Mq,f represents the matrix of rotation of a given cell (in general

defined by the three Euler angles), and s9p is a diagonal tensor in a coordinate

system defined by conductivity axis. For a uniaxial symmetrically

permeabilized cell, where a cell has one conductivity value along the

direction of the field and the other in the perpendicular direction, the

equivalent conductivity writes as

s9p ¼
s? 0 0

0 s? 0

0 0 sjj

0
@

1
A: (A2)

A generalized tensor form of Maxwell theory can be derived which gives for

the bulk effective conductivity tensor

s ¼ seI1 3fse

sp � seI
sp 1 2seI

� �
M

3
1

ð1� f Þ1 3fsehðsp 1 2seIÞ�1iM
E0; (A3)

where h iM denotes an average over the conductivity tensor orientation of

each cell. Eq. A3 is the Maxwell result for mixtures of anisotropic particles.

For a mixture of such particles (cells) embedded in an isotropic medium, it

is convenient to define such a coordinate system that E is applied in the

positive z-direction. The rotation matrix M then depends only on two

orientation angles: q and f between the principal conductivity axes and the

z-axes. In this coordinate system, the conductivity tensor of each cell can be

written as

where a ¼ s|| � s?. By defining b ¼ (s? 1 2se)(s|| � se), the explicit

expression for the bulk effective conductivity can be obtained as

where

and

sp ¼ s?I1 a
cos

2
f sin

2
q cosf sinf sin

2
q cosf cosq sinq

cosf sinf sin
2
q sin

2
f sin

2
q sinf cosq sinq

cosf cosq sinq sinf cosq sinq cos
2
q

0
@

1
A; (A4)

s ¼ seI1
3fseA

ðs? 1 2seÞðsjj 1 2seÞ
1� f 1

3fseB

ðs? 1 2seÞðsjj 1 2seÞ

� ��1

; (A5)

A ¼

b� 3asehcos2 q1 sin
2
f sin

2
qi 3ase

2
hsin 2f sin

2
qi 3ase

2
hcosf sin 2qi

3ase

2
hsin 2f sin

2
qi b� 3asehcos2 q1 cos

2
f sin

2
qi 3ase

2
hsinf sin 2qi

3ase

2
hcosf sin 2qi 3ase

2
hsinf sin 2qi b1

3ase

2
ðhcos 2qi � 1Þ

0
BBBB@

1
CCCCA; (A6)
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If the conductivity axes of all cells are oriented in the direction of the

applied field E (in z-direction), then the effective conductivity is diagonal

(si 6¼j ¼ 0):

The tensor has uniaxial symmetry, and its diagonal elements are given by the

Maxwell equation for isotropic particles having sp ¼ s? and sp ¼ s||.

If the conductivity axes of all cells are oriented in the y-direction

(perpendicular to the applied electric field), then the effective conductivity is

again diagonal (si 6¼j ¼ 0),

s11 ¼s33 ¼ se 1 3fse

ðs? � seÞ
ðs? � seÞð1� f Þ1 3se

;

s22 ¼se 1 3fse

ðsjj � seÞ
ðsjj � seÞð1� f Þ1 3se

: (A9)

For uniform orientation distribution over all angles is the effective

conductivity isotropic:

This is a Maxwell approximation for randomly oriented anisotropic particles

(cells) embedded in an isotropic medium.

For cells in a suspension, it is realistic to assume that we have a uniform

distribution over angles f and a normal distribution over the angles q

around angle q ¼ 0,

GðzÞ ¼ 1

g
ffiffiffiffiffiffi
2p

p e
�ðz�1Þ2=2g2

; (A11)

where z¼ cos q and g is the width of the distribution. For larger interactions

between the cells, the cells rotate more, so parameter g is larger. However,

we have to also take into account that normal distribution is defined on an

infinite interval, whereas z goes only from �1 to 1 (q ¼ [0, p]). Thus, the

assumption of the normal distribution is physically valid only for the

distribution which is narrow enough, so that the part of the distribution tail

for z below �1 can be neglected; i.e., G (z ¼ 1) � (G (z ¼ 0). To calculate

the effective conductivity of the cells which have such a distribution, we first

have to calculate the matrices A and B and all the averages over angles for

this distribution. Since all nondiagonal elements are zero for a uniform

distribution over f, we have to calculate only the following averages:

hcos2 q1 sin
2
f sin

2
qi

¼ 1

4p

ð2p

0

df

ð1

�1

½z2 1 sin
2
fð1� z

2Þ�GðzÞdz

¼ 5

16
� g

2

2
; (A12)

hcos 2qi ¼ 1

4p

ð2p

0

df

ð1

�1

½2z2 � 1�GðzÞdz ¼ 1

2
� 2g

2
:

(A13)

From this, we obtain third diagonal component of the effective conductivity

tensor,

s33 ¼ se 1 3fse

A33

ð1� f Þðs? 1 2seÞðsjj 1 2seÞ1 3fseB33

;

(A14)

where

A33 ¼ b1
3ase

2
�2g

2 � 1

2

� �
;

B33 ¼
s? 1sjj 1 4se � a

1

2
� 2g

2

� �

2
:

(A15)

B ¼

s? 1 2sjj 1 ahcos2 q1 sin
2
f sin

2
qi � a

2
hsin 2f sin

2
qi � a

2
hcosf sin 2qi

� a

2
hsin 2f sin

2
qi s? 1 2sjjb1 ahcos2 q1 cos

2
f sin

2
qi � a

2
hsinf sin 2qi

� a

2
hcosf sin 2qi � a

2
hsinf sin 2qi s? 1sjj 1 4se � ahcos 2qi

2

0
BBBB@

1
CCCCA:

(A7)

s ¼

se 1 3fse

3fseðs? � seÞ
ðs? � seÞð1� f Þ1 3se

0 0

0 se 1 3fse

3fseðs? � seÞ
ðs? � seÞð1� f Þ1 3se

0

0 0 se 1 3fse

3fseðsjj � seÞ
ðsjj � seÞð1� f Þ1 3se

0
BBBBBB@

1
CCCCCCA
:

(A8)

s ¼ se 1 3fse

ðs? 1 2seÞðsjj � seÞ � 2seðsjj � s?Þ
ð1� f Þðs? 1 2seÞðsjj 1 2seÞ1 fseðs? 1 2sjj 1 6seÞ

: (A10)
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With Eq. A14, it is thus possible to calculate the conductivity in the direction

of the applied field for a given width g of a normal distribution.

APPENDIX B

Here we reproduce the calculation of Hibino et al. (1991) of a membrane

potential for a spherical cell with a finite membrane conductance placed in

a homogeneous electric field. We deal only with a steady state. The electric

potentials inside and outside the cell, ci and ce, satisfy Laplace’s equation,

Dciðr; u;fÞ ¼ Dceðr; u;fÞ ¼ 0; (B1)

with boundary conditions,

si

@ci

@r

� �
r¼R

¼ se

@ce

@r

� �
r¼R

¼ G½ce � ci�r¼R; (B2)

limR ! ‘ ce ! E0R cos u

where E0 is the intensity of the electric field far from the cell; si and se are

the conductivities of the inter- and extracellular medium, respectively; R is

the cell radius; G is the membrane conductance; and (r, u, and f) are the

polar coordinates. We introduce dimensionless quantities:

Ci ¼
ci

RE0

; Ce ¼
ce

RE0

; r9 ¼ r=R;

n ¼ si=se; and gðuÞ ¼ R=siGðuÞ; (B3)

where g(u) represents normalized conductance of the membrane:

gðuÞ ¼ go

ðjcos uj � cos ucÞj

ð1� cos ucÞj
jcos uj[cos uc

0 jcos uj# cos uc

:

8<
: (B4)

If we assume that g(u) is symmetric around the z-axis, thenC values are also

symmetric around the z-axis. The solution of Eqs. B1 and B2 can be written

as

Ci ¼ c0 1 +
‘

n¼1

cnðr9ÞnPnðcos uÞ
n

; (B5)

Ce ¼ r91
1

2r9
2

� �
P1ðcos uÞ1 n +

‘

n¼1

cnPnðcos uÞ
ðn1 1Þðr9Þn11 ; (B6)

where Pn is the Legendre polynomial of order n, and cn values are constants.

Under assumed symmetry, only odd cn values are nonzero. By introduction

of Eqs. B4–B6 into Eq. B2, and by using the orthogonality of Legendre’s

polynomes, we obtain

2

2m1 1
cm ¼ 3

2
gm1 � +

‘

n¼1

cn
1

n
1

n

n1 1

� �
gnm; (B7)

where gnm are the elements of the n 3 m matrix of the integrals,

gnm ¼
ðp

o

PmðcosqÞgðqÞPnðcosqÞdðcosqÞ: (B8)

Form¼ 1. . .‘, Eq. B7 constitutes a linear equation system for cn values. For
finite N, we obtain a finite system of linear equations for coefficient cn
values.
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