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We describe a numerical experiment concerning the order of
magnitude of q(x) := M (x) /

√
x, where M(x) is the Mertens

function (the summatory function of the Möbius function). It
is known that, if the Riemann hypothesis is true and all non-
trivial zeros of the Riemann zeta-function are simple, q(x) can
be approximated by a series of trigonometric functions of log x.
We try to obtain an Ω-estimate of the order of q(x) by search-
ing for increasingly large extrema of the sum of the first 102,

104, and 106 terms of this series. Based on the extrema found
in the range 104 ≤ x ≤ 101010

we conjecture that q(x) =

Ω±(
√

log log log x).

1. INTRODUCTION

The Mertens function is defined as

M(x) =
∑

1≤n≤x

µ(n)

where µ(n) is the Möbius function defined as µ(1) = 1,
µ(n) = (−1)k if n is a product of k different primes, and
µ(n) = 0 if n contains a prime factor to a power higher
than the first. The order of magnitude of the function
M(x) is closely related to the location of the zeros of
the Riemann zeta-function, which is, largely due to its
consequences for the distribution of the primes, one of
the most important unsolved problems in analytic num-
ber theory. In short, a proof that M(x) = O(xθ) would
imply that ζ(s) has no zeros in the half-plane �(s) > θ,
and, consequently, that π(x), the number of primes not
exceeding x, can be approximated as

π(x) =
∫ x

0

du

log u
+ O(xθ log x).

This is the principal reason for the interest in the order
of M(x).

For convenience, we define

q(x) := M(x)/
√

x

and use q(x) instead of M(x) wherever it will simplify
the formulations.
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FIGURE 1. q(x) in the range 1 ≤ x ≤ 1014. The triangles mark the ILq.

It is known that

q(x) = O(x1/2), (1–1)

while the truth of the Riemann hypothesis would
strengthen this to1

q(x) = O(xε) for every ε > 0. (1–2)

It is also known that

q(x) = Ω±(1),

but it remains unknown whether q(x) is unbounded,
although many experts suppose this to be the
case. Odlyzko and te Riele [Odlyzko and te Riele
85] have shown that lim supx→∞ q(x) > 1.06 and
lim infx→∞ q(x) < −1.009, thereby disproving the fa-
mous conjecture by Mertens [Mertens 97] stating that
|q(x)| ≤ 1. Pintz [Pintz 87] proved that |q(x)| > 1 occurs
for some x < e3.21×1064 � 101.4×1064

.
Several authors have set forth conjectures stronger

than the above O- and Ω-bounds of q(x). We present
and discuss these conjectures in Section 5.

Throughout this paper we assume that the Riemann
hypothesis is true, and that all nontrivial zeros of the
Riemann zeta-function are simple. Our aim will be to
estimate computationally the order of q(x) under these
(and some additional) assumptions.

2. THE GENERAL BEHAVIOR OF q(x)

Figure 1 shows the plot of q(x) in the range 1 ≤ x ≤ 1014,
obtained by computing M(x) for all integers in this range

1The actual strongest results to date are slight improve-
ments of (1–1) and (1–2): [Ford 02] has shown that q(x) =
O(x1/2 exp(−0.2098(log x)3/5/(log log x)1/5)), and [Titchmarsh
27] proved that the Riemann hypothesis implies q(x) =
O(xA/ log log x) for some A > 0.

(see [Kotnik and van de Lune 03] for details). This plot
suggests some guidelines for a computational estimation
of the order of q(x). First, q(x) behaves quite atypically
at small x; due to this we henceforth focus on x ≥ 104.
Second, the order of q(x) is apparently rather small, with
reliable estimates only likely to transpire at x much larger
than 1014. And third, it seems that there are certain
bounds to the rate of variation of q(x) on a logarithmic
x-scale; more specifically, it seems that there exist con-
stants G and β0 > 1 such that for all β ≥ β0 and all
sufficiently large x

∣∣∣∣ q(βx) − q(x)
log(βx) − log x

∣∣∣∣ =
|q(βx) − q(x)|

log β
≤ G.

The values of q(x) in the range 104 ≤ x ≤ 1014 suggest
that for β = 100.0002 (the x-multiplier used in Section 4.3)
and x > 104, we may quite safely take G = 200. Some
additional numerical evidence for such boundedness of
the rate of variation of q(x) can be seen in Figure 2, and
some theoretical ground for the dependence of q on log x

is provided by the following result.

Theorem 2.1. (Titchmarsh.) Let ζ denote the Riemann
zeta-function, and ρ = 1

2 + iγ its nontrivial zeros. Then
there exists a sequence Tn, n ≤ Tn ≤ n + 1, such that

q(x) = 2 lim
n→∞

∑
0<γ<Tn

Re
(

xiγ

ρ ζ ′(ρ)

)
− R(x) + O(x−5/2)

where R(x) = 2−µ(x)/2√
x

if x is an integer, and R(x) = 2√
x

otherwise.

This is a slight reformulation of Theorem 14.27 proved
in [Titchmarsh 51]. The relation between q and log x is
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FIGURE 2. q(x) in the neighborhood of the first seven ILq.

seen more clearly if the k-th term of the above series is
rewritten as

|ak| cos (γk log x + arg ak)

where ak = (ρkζ ′(ρk))−1, with ρk = 1
2 + iγk denoting

the k-th ζ-zero in the upper half-plane, counted in the
upward direction.

3. EXACT AND APPROXIMATE COMPUTATIONS
OF q(x)

We now introduce a definition, which is admittedly some-
what ad hoc, but simple to state and to understand, and
will adequately serve our purposes.

Definition 3.1. In the range 10n < x ≤ 10n+1, n ∈ N,
n ≥ 4, we will refer to a q-value as an increasingly large
positive q (abbreviated ILq+) if it is the largest q-value
in this range, and it exceeds all q in the range 104 ≤ x ≤
10n. We introduce increasingly large negative q (ILq−)
analogously, and use the term increasingly large q (ILq)
when referring to either of them.

There are seven ILq in the range 104 ≤ x ≤ 1014:

q(48433) = +0.436215...

q(300551) = +0.437776...

q(7766842813) = +0.570591...

q(24185) = −0.462977...

q(179919749) = −0.464162...

q(330508686218) = −0.512814...

q(71578936427177) = −0.524797...

The scarcity of the ILq suggests that a much broader x-
range would have to be investigated for an estimation of
the order of q(x). Extending the systematic computa-
tions of M(x) at x ∈ N would therefore very likely be fu-
tile for this purpose. However, the properties of the peaks
of q(x) containing the first seven ILq suggest that there
may be a much more efficient way of detecting the ILq.
As Figure 2 shows, these peaks are rather broad-based,
and their widths on a logarithmic x-scale do not differ
considerably, the latter observation being consistent with
the considerations of Section 2. This suggests that large
q-values may be detected efficiently by sampling q(x) at
sufficiently dense, yet exponentially increasing values of
x. Together with a method for computing isolated values
of q(x), this would allow for a significant extension of the
x-range in which to search for the ILq.

There are at least two algorithms for exact computa-
tion of isolated values of q(x), one developed by Dress
[Dress 93], and another by Deléglise and Rivat [Deléglise
and Rivat 96]. A third such algorithm has been out-
lined in [Lagarias and Odlyzko 87]. But as x increases,
these algorithms rapidly become too time- and memory-
consuming. Thus, at the time of writing, a q-value at
x ∼ 1020 is computable, but q(1030) is definitely out of
reach with any of these algorithms.

The remaining possibility is to compute the values of
q(x) approximately. Theorem 2.1 suggests that for any x,
as K increases, partial sums of the form

qK(x) := 2
K∑

k=1

|ak| cos (γk log x + arg ak) − R(x)

eventually converge to the value of q(x).2

2Since R(x) = O(x−1/2), in practice the computation of this
correction term can be omitted for sufficiently large x.



476 Experimental Mathematics, Vol. 13 (2004), No. 4

FIGURE 3. E(x, K) as a function of K for the second and the seventh ILq.

In the range 104 ≤ x ≤ 106, this convergence seems
relatively rapid. Denoting

E(x,K) := qK(x) − q(x),

we have
∣∣E(x, 106)

∣∣ < 0.0017 for all integers in this range,
as well as for each of the first seven ILq (see Table 1).
Figure 3 shows E(x,K) as a function of K for two of
these ILq.

Since no reliable bounds can be imposed on E(x,K)
outside the x-range where the actual values of q(x) are
known, the use of qK(x) in estimating the order of
q(x) is in general open to doubt. However, it seems
hard to envisage a mechanism that would consistently
yield |qK(x)| > |q(x)| at x-values where |qK(x)| is rel-
atively large, and numerical data also display nothing
of the kind. In other words, it seems unlikely that all
of the large qK(x) are overestimates of their respective
q(x). This suggests that for a fixed and sufficiently large
K, a sufficiently comprehensive set of increasingly large
|qK(x)| covering a sufficiently broad x-range could serve
as a basis for an Ω-estimate of the order of q(x). Using
the same procedure to obtain also an O-estimate would
be more questionable, since some of the large qK(x) are
certainly underestimates of their respective q(x), and this
effect may become more pronounced as x increases.

4. THE SEARCH FOR INCREASINGLY LARGE qK

4.1 Determination of γk, |ak|, and arg ak

The list of the first million γk, accurate to ±10−9, was
kindly provided to the authors by Andrew M. Odlyzko.
Mathematica 4.1 was used to improve the accuracy of
these γk, and subsequently to compute the correspond-
ing |ak| and arg ak. The γk were computed with an ac-
curacy of ±10−20 by setting $MinPrecision to 26 and

applying the FindRoot routine to the RiemannSiegelZ

function, with AccuracyGoal set to 20. The accuracy
of the obtained values was verified by checking that
RiemannSiegelZ changes sign between γk − 10−20 and
γk + 10−20.

Using these values of γk, the values of |ak| and arg ak

were computed with an accuracy of ±10−12. This was
first done directly, using the Zeta’ function, and for ver-
ification also indirectly, using the relations

|ak| =
(
|Z ′(γk)|

√
1
4 + γ2

k

)−1

;

arg ak = − arctan(2γk) + θ(γk) − (−1)k π
2

and the RiemannSiegelZ’ and RiemannSiegelTheta

functions.
The search program for increasingly large qK was writ-

ten in Delphi 6.0 using the Int64 type (64 bits) for integer
variables, and the Extended type (80 bits = 19–20 sig-
nificant digits) for real variables. Due to the latter, the
worst accuracy of γk in our computations was ±10−14,
while the accuracy of |ak| and arg ak remained at ±10−12.
With these accuracies, with log x ≤ 1010, and K ≤ 106,
the error in the computed qK cannot exceed ±6 × 10−4.

4.2 The Range 104 ≤ x ≤ 1010000

At the seven ILq in the range 104 ≤ x ≤ 1014, the
corresponding q102 , q104 , and q106 -values are also large.
Furthermore, these large values are all detected by sam-
pling q102 , q104 , and q106 , respectively, at exponentially
increasing values of x, provided that the x-multiplier is
sufficiently small (see Step (3) of the algorithm below
and the comment that follows). The search for increas-
ingly large values of qK was performed for K = 102,
104, and 106. The algorithm used to cover the range
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x M(x) q(x) q106(x) E(x, 106)

48433 96 0.436215 0.435930 –0.000285

300551 240 0.437776 0.437922 0.000146

7766842813 50286 0.570591 0.568908 –0.001683

x M(x) q(x) q106(x) E(x, 106)

24185 –72 –0.462977 –0.462869 0.000108

179919749 –6226 –0.464162 –0.462722 0.001440

330508686218 –294816 –0.512814 –0.511488 0.001326

71578936427177 –4440015 –0.524797 –0.523670 0.001127

TABLE 1. Top: The ILq+ in the range 104 ≤ x ≤ 1014 and the corresponding q106 -values; bottom: The ILq− in the range
104 ≤ x ≤ 1014 and the corresponding q106 -values

104 ≤ x ≤ 1010000 for each of these three values of K can
be presented schematically as follows:

(0) x := 104; qK min := −0.35; qK max := 0.35;

(1) compute qK(x) using the precomputed |ak|, arg ak,
and γk;
if not (qK(x) > 0.9 qK max or qK(x) < 0.9 qK min)
then go to (3);

(2) compute qK(ξ) for log10 ξ = log10 x + 10−6m, m =
−199 (1) 199;
for each m: if qK(ξ) > qK max then qK max := qK(ξ);
store qK(ξ);
for each m: if qK(ξ) < qK min then qK min := qK(ξ);
store qK(ξ);

(3) multiply x by 100.0002 and go to (1).

In analogy to the ILq, the set of stored values was then
reduced by keeping only the largest value among those
belonging to a range 10n < x ≤ 10n+1, n ∈ N. The
values that remained in the set are given in Table 1. All
the ILq in the range 104 ≤ x ≤ 1014 would have been
detected by this algorithm (i.e., Step (2) would be run
for the range containing each ILq), through either q102 ,
q104 , or q106 -values, also with the threshold in Step (1)
set to 0.93 and the x-multiplier in Step (3) set to 100.001.

4.3 The Range 1010000 < x ≤ 101010

At each of the increasingly large positive and negative
q102 , q104 , and q106 found in the range 104 ≤ x ≤ 1010000,
also for much smaller K the qK-values are consistently
large. Therefore, a preliminary qualifying requirement
was introduced in the search for increasingly large q102 ,
q104 , and q106 in the range 1010000 < x ≤ 101010

. Before
Step (1) in the algorithm of Section 4.2, three preliminary
checks were performed: |q5(x)| > 0.28, |q50(x)| > 0.41,
and |q500(x)| > 0.48 (for q104 and q106). To also account

for the fact that the maximal slope of q5 on the logarith-
mic x-scale satisfies

∣∣∣∣ dq5(x)
d(log x)

∣∣∣∣ ≤ 2
5∑

k=1

γk |ak| = 8.716...,

a variable x-multiplier given by

max
(

exp
(

0.28 − |q5(x)|
8.72

)
, 100.0002

)

was used.
The set of stored values was again reduced by keep-

ing only the largest value per each decimal order of
magnitude, and the values that remained are given in
Tables 2–4. None of the increasingly large positive or
negative q102 , q104 , and q106 -values found in the range
1020 ≤ x ≤ 1010000 would have been missed by this algo-
rithm, not even with the thresholds set at |q5(x)| > 0.31,
|q50(x)| > 0.46, and |q500(x)| > 0.55.

5. RESULTS AND DISCUSSION

In Figure 4, the ILq and the increasingly large positive
and negative q102 , q104 , and q106 -values found in this
study are plotted against

√
log log log x. While all the

q102 are within the angle defined by ± 1
2

√
log log log x,

some of the q104 , and even more of the q106 lie outside
this angle, as do two of the ILq. If this trend persists, it
would suggest that lim supx→∞ q(x)/

√
log log log x ≥ 1

2

and lim infx→∞ q(x)/
√

log log log x ≤ − 1
2 . Due to the

extremely slow growth of
√

log log log x, the studied x-
range would have to be extended substantially to pro-
vide more insight into the actual situation. Merely for
illustration, we note that if ± 1

2

√
log log log x were the ac-

tual asymptotic bounds of q(x), then the first |q(x)| > 1
should occur not too far from x � 102.3×1023

, which is
well below Pintz’s bound x � 101.4×1064

(see Section 1).
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log10 x q102(x)

4.686776 0.386

5.476423 0.395

9.888887 0.513

42.353094 0.529

134.990791 0.544

320.901231 0.566

706.032905 0.594

1213.587635 0.607

5331.990640 0.708

693184.856510 0.708

2465089.468153 0.722

10827447.486503 0.731

10928392.830701 0.737

25462014.668048 0.737

40582074.348645 0.751

339249048.095259 0.754

380389486.067519 0.763

854362139.096477 0.781

1139774532.165446 0.784

1868381532.048425 0.805

log10 x q102(x)

4.776083 –0.408

11.520454 –0.434

13.857640 –0.475

19.063485 –0.508

60.964153 –0.557

370.823174 –0.598

637.035857 –0.601

726.604947 –0.610

1305.385522 –0.615

11048.373075 –0.635

44512.589605 –0.648

67873.765888 –0.666

88251.095416 –0.671

331949.586837 –0.673

373684.562234 –0.703

593091.346546 –0.719

6664605.804812 –0.722

8412967.792159 –0.738

60987411.017141 –0.740

72619160.377213 –0.748

176081217.423035 –0.781

506751742.037025 –0.786

4698299201.556588 –0.793

TABLE 2. The increasingly large positive (left) and negative (right) q102 -values found in the range 104 ≤ x ≤ 101010
.

log10 x q104(x)

4.685212 0.430

9.890297 0.560

42.355325 0.612

706.031910 0.615

850.263123 0.620

873.623597 0.620

1176.714799 0.649

1213.586433 0.650

5331.990852 0.788

37548270.157211 0.796

108377624.910830 0.809

637358954.926941 0.813

825839004.998209 0.818

1670955708.587131 0.831

4519939603.762719 0.837

log10 x q104(x)

4.775075 –0.461

11.519165 –0.501

13.855140 –0.514

19.064798 –0.579

60.963554 –0.587

370.823025 –0.670

1305.386211 –0.680

44512.589337 –0.688

61950.126978 –0.688

65153.059707 –0.699

77416.965980 –0.709

88251.096827 –0.732

201481.397575 –0.734

331949.587583 –0.736

373684.559306 –0.746

593091.345988 –0.754

2194019.447030 –0.754

3074103.225431 –0.764

5936921.848969 –0.776

8412967.791205 –0.778

24899895.454533 –0.797

72619160.376665 –0.819

176081217.424535 –0.834

1744552303.015566 –0.843

TABLE 3. The increasingly large positive (left) and negative (right) q104 -values found in the range 104 ≤ x ≤ 101010
.
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log10 x q106(x)

4.685148 0.437

5.478152 0.438

9.890246 0.570

42.355231 0.619

427.468249 0.625

706.031885 0.627

850.263097 0.628

1176.714738 0.655

1213.585970 0.659

5331.990860 0.793

37548270.157201 0.804

108377624.910797 0.815

637358954.926958 0.817

825839004.998232 0.823

1670955708.587354 0.837

4519939603.762122 0.843

log10 x q106(x)

4.383562 –0.463

11.519183 –0.511

13.854786 –0.524

19.064827 –0.585

60.963582 –0.589

370.823033 –0.677

1305.386175 –0.689

44512.589427 –0.696

65153.059738 –0.708

77416.965976 –0.715

88251.096825 –0.741

373684.559297 –0.753

593091.345965 –0.759

1201163.699231 –0.760

3074103.225118 –0.769

5936921.848867 –0.785

8412967.791234 –0.787

24899895.454588 –0.808

72619160.376650 –0.825

176081217.424585 –0.845

1744552303.015502 –0.851

TABLE 4. The increasingly large positive (left) and negative (right) q106 -values found in the range 104 ≤ x ≤ 101010
.

FIGURE 4. The increasingly large q102 (left), q104 (middle), q106 (right, circles), and the ILq (right, squares) plotted
against

√
log log log x. The dashed lines correspond to the functions ± 1

2

√
log log log x.

In a slightly more conservative spirit, we have the fol-
lowing conjecture:

Conjecture 5.1. q(x) = Ω±(
√

log log log x).

It is sensible to compare Conjecture 5.1 to some other
conjectures about the order of q(x) that have been set
forth. We will omit here several conjectures that have al-
ready been disproved; some historical details about them
can be found in a survey by [te Riele 93].

Good and Churchhouse [Good and Churchhouse 68],
as well as Lévy in a comment to Saffari [Saffari 70], have
proposed that

lim sup
x→∞

|q(x)|√
log log x

= C,

with C =
√

12
π according to Good and Churchhouse,

whereas C = 6
√

2
π2 according to Lévy. Either of these

conjectures is much stronger than Conjecture 5.1, but
unless the behavior of q(x) changes drastically for very
large x, it seems unclear how they could be reconciled
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with experimental data, since
√

12
π

√
log log x (respectively

6
√

2
π2

√
log log x) exceeds the value of 1 at x � 10 (respec-

tively x � 48), while |q(x)| itself never exceeds even
the value of 0.6 for any x ≤ 1014. The conjectures
of the form q(x) = Ω(

√
log log x) are based on the as-

sumption that the Möbius sequence {µ(n)} resembles a
random sequence in its large-scale behavior, and their
authors acknowledge that such probabilistic reasoning
has as yet no firm theoretical foundation. Moreover,
such assumptions of randomness seem questionable, due
to the fact that on a sufficiently large scale, there is a
clear regularity of the distribution of positive and neg-
ative values of µ(n). This large-scale regularity is quite
apparent in the graph of q(x) in Figure 1, where the
presence of the first term of the series in Theorem 2.1,
|a1| cos (γ1 log x + arg a1) ≈ 0.18 cos (14.14 log x − 1.69),
is relatively easily discernible.3

More recently, [Ng 04], partly building on unpublished
work by Gonek, conjectured that

lim sup
x→∞

|q(x)|
(log log log x)5/4

= B (5–1)

for some B > 0. This would be stronger than our Conjec-
ture 5.1, as it replaces the power 1

2 by 5
4 . In analogy to the

right panel of Figure 4, Figure 5 shows the ILq and the
increasingly large positive and negative q106 -values plot-
ted against (log log log x)5/4. It seems hard to envisage
how either the negative- or positive-valued points could
outline an asymptote of the form B(log log log x)5/4, i.e.,
a straight line passing through the origin. This sug-
gests either that as x increases, the q106 -values eventu-
ally become considerably smaller than the corresponding
q-values, or that the power 5

4 in (5–1) is an overesti-
mate. The former is certainly possible, but it appears
that also the latter cannot be excluded. Namely, the
power 5

4 stems from a further conjecture [Ng 04]

J(T ) :=
∑

0<γ≤T

1
|ρ ζ ′(ρ)| 	 (log T )5/4. (5–2)

At the one-millionth ζ-zero, where T = 600269.677...,
the value of J(T )/(log T )5/4 is only 0.104..., and while
this could be due to the small value of the multiplicative
constant involved, it could also be due to the power 5

4 in
(5–2) being itself an overestimate.

3More rigorously, a few thousand samples of q(10w) covering the
range 4 ≤ w ≤ 14 suffice for the discrete Fourier transform to show
a clear and very prominent peak at the frequency corresponding to
γ1. The peaks corresponding to the following γk are also clearly
visible.

FIGURE 5. The ILq (squares) and increasingly large q106

(circles) plotted against (log log log x)5/4.

Finally, Conjecture 5.1 can also be considered with re-
spect to the results obtainable for the similar yet some-
what simpler case involving the Chebyshev psi-function,
for which [von Mangoldt 95] proved the formula

(x − ψ(x))/
√

x = 2
∞∑

k=1

∣∣ρ−1
k

∣∣ cos
(
γk log x + arg ρ−1

k

)

+ O(x−1/2).

Littlewood [Littlewood 17] has shown that

(x − ψ(x))/
√

x = Ω±(log log log x), (5–3)

building his proof on the fact that the real part of∑∞
k=1 exp(iρkz)/ρk is unbounded in the neighborhood

of z = 0. An analogous proof of unboundedness
cannot be provided for q(x), since the real part of∑∞

k=1 exp(iρkz)/ (ρkζ ′(ρk)) is bounded in this neighbor-
hood (see [Titchmarsh 51, Section 14.28]). In addition,
although

∑ |ρk|−2 is known to be convergent, and the
convergence of

∑ |ρkζ ′(ρk)|−2 has not yet been proved,
numerical data suggest that the latter series converges
more rapidly, and to a smaller sum than the former (Ta-
ble 5). And finally, Theorem 14.29B in [Titchmarsh 51]
shows that there is also a plausible sufficient condition
for the convergence of

∑ |ρkζ ′(ρk)|−2. If all this is taken
into account, it would perhaps not be too surprising if
q(x) = o((x − ψ(x))/

√
x). We note in conclusion that

this argument is not necessarily incompatible with (5–1),
provided that (5–3) can be strengthened sufficiently.
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104 0.0229610... 0.0145073...

105 0.0230736... 0.0145155...

106 0.0230924... 0.0145167...
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notes Euler’s constant.
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ing the Summation of the Möbius Function.”Exp. Math.
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Mertens. Avec une observation par Paul Lévy.”C. R.
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