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PREFACE 

The present PhD thesis is a result of procedure design and research, and algorithm 

development and validation performed during the PhD study period at the Laboratory of 

Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana. The results of 

the performed work have been published in (or have been submitted to) the following 

international journals: 

 
Article 1: PATIENT-SPECIFIC TREATMENT PLANNING OF 
ELECTROCHEMOTHERAPY: PROCEDURE DESIGN AND POSSIBLE PITFALLS 
PAVLIHA Denis, KOS Bor, ŽUPANIČ Anže, MARČAN Marija, SERŠA Gregor, 
MIKLAVČIČ Damijan 
Bioelectrochemistry 87: 265-273, 2012. 
 
 
Article 2: ELECTROPORATION-BASED TREATMENT PLANNING FOR DEEP-
SEATED TUMORS BASED ON AUTOMATIC LIVER SEGMENTATION OF MRI 
IMAGES 
PAVLIHA Denis, M. MUŠIČ Maja, SERŠA Gregor, MIKLAVČIČ Damijan 
PLOS ONE: resubmitted after minor revision, 2013. 
 
 
Article 3: PLANNING OF ELECTROPORATION-BASED TREATMENTS USING 
WEB-BASED TREATMENT PLANNING SOFTWARE 
PAVLIHA Denis, KOS Bor, MARČAN Marija, ŽUPANIČ Anže, SERŠA Gregor, 
MIKLAVČIČ Damijan 
Journal of Membrane Biology: submitted, 2013. 
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ABSTRACT 

When a biological cell is exposed to an external electric field of sufficient strength, its 

plasma membrane becomes transiently permeabilized. The phenomenon termed 

electroporation allows the material from outside or inside the cell to traverse the plasma 

membrane, which would be otherwise impossible. A paramount electroporation-based 

application is electrochemotherapy (ECT) which enhances chemotherapy outcome by 

porating the tumor cells and, thus, allowing the cytostatic drug to enter the cells in larger 

amounts and destroy them. ECT has already been in clinical practice for treating superficial 

nodules of skin melanoma metastases; in case of such nodules, the clinician needs to follow 

standard operating procedures for successful treatment since superficial metastases are 

easily-accessible. Because ECT is a successful method for local tumor treatment, advances 

towards treating deep-seated tumors have been made. When treating deep-seated tumors, 

which are diverse in shape, size, and location, patient-specific treatment planning is 

required for successful treatment. Based on the radiotherapy example where treatment 

planning is known to be of paramount importance, we established treatment planning 

procedure of electroporation-based treatments (e.g. ECT). Deriving from a clinical study 

where colorectal metastases in the liver were subject to ECT treatment, we implemented 

and evaluated three possible automatic liver segmentation algorithms that generate three-

dimensional liver models from patient’s medical images. Optimization of the algorithms 

was performed on a set of seven patient cases previously manually segmented by a 

radiologist (i.e. training set), and validation of optimized algorithms was performed on 

another four patient cases previously manually segmented by a radiologist that were not 

part of the training set. Validation demonstrated that our implementations of segmentation 

algorithms can perform liver segmentation of cases that were not part of the training set, as 

well. Furthermore, we developed web-based treatment planning software with a graphical 

user interface that allows remote treatment planning to clinicians without engineering 

knowledge. The software allows generation of treatment plans for ECT remotely: 

automatic segmentation of liver is possible, as well as loading presegmented cases, which 

allows clinicians evaluation of already-treated cases. 
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RAZŠIRJENI POVZETEK V SLOVENSKEM JEZIKU 

UVOD 

 

Če biološko celico izpostavimo zunanjemu električnemu polju dovolj visoke jakosti, pride 

do začasnega povečanja prepustnosti celične membrane (Kotnik et al., 2010). Pojav, ki ga 

imenujemo elektroporacija (Neumann et al., 1982), omogoča snovem iz okolice, da 

prehajajo celično membrano, kar bi bilo sicer oteženo ali nemogoče. Ilustracijo pojava 

elektroporacije prikazuje Slika 1. 

 

Slika 1: ob prisotnosti električnega polja visoke jakosti se na celični membrani začasno 
vzpostavijo pore, ki omogočajo molekulam snovi iz okolice prehajanje celične membrane. Po 
določenem času se pore zaprejo in snov iz okolice ostane vnesena v celici. 

Električno polje, ki je predpogoj za pojav elektroporacije, vzpostavimo v okolici ciljne 

skupine celic tako, da dovedemo kratkotrajne visokonapetostne električne pulze z uporabo 

generatorja pulzov (tj. elektroporatorja) (Puc et al., 2004). Čeprav vsi mehanizmi, ki so 

povezani z elektroporacijo, še niso povsem pojasnjeni, pa je elektroporacija že uveljavljena 

kot splošno uporaben tehnološki postopek celične manipulacije, saj učinkuje na vse vrste 

celic (tj. živalske, rastlinske in mikroorganizme) (Miklavčič et al., 2012). Elektroporacija je 

že v rabi na različnih področjih: v medicini za elektrokemoterapijo tumorjev (Serša and 

Miklavčič, 2008) in atermično ablacijo (Garcia et al., 2011; Rubinsky et al., 2007), gensko 

terapijo (Heller and Heller, 2010) in drugih (Daugimont et al., 2010; Gusbeth et al., 2009; 

Toepfl et al., 2007; Ušaj et al., 2010).  
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Ena pomembnejših aplikacij, ki temelji na pojavu elektroporacije, je elektrokemoterapija 

(EKT) (Serša et al., 2008). EKT je lokalna metoda zdravljenja raka, ki nadgrajuje 

kemoterapijo z uporabo elektroporacije: ob prisotnosti dovolj močnega električnega polja 

pride v področju tumorja do povečanja prepustnosti celične membrane (Serša and 

Miklavčič, 2008). Pojav omogoči kemoterapevtiku, ki je bil predhodno vbrizgan bolniku 

intravensko ali sistemsko, da laže prodre v tumorske celice in jih tako uniči. Postopek EKT 

prikazuje Slika 2.  

 

Slika 2: potek zdravljenja tumorjev z elektrokemoterapijo (Maček-Lebar et al., 1998). 

EKT je že v klinični rabi za zdravljenje površinskih metastaz kožnega melanoma v več kot 

sto kliničnih centrih v Evropi (Miklavčič et al., 2012). V primeru zdravljenja površinskih 

metastaz, ki so enostavno dostopne ter povečini podobnih oblik in relativno majhne 

velikosti, je za uspešno zdravljenje dovolj, da zdravnik upošteva standardne operativne 

postopke (SOP), ki narekujejo lastnosti uporabljenih električnih pulzov (amplituda, čas 

trajanja, ponavljalna frekvenca in število) in uporabo igelnih ali ploščatih elektrod z 

znanimi dimenzijami, in tako zagotovi uspešno zdravljenje (Mir et al., 2006). Omenjeni 

način zdravljenja, tj. uporaba SOP za izvedbo EKT, pa ne predvideva zdravljenja globoko 

ležečih tumorjev, kjer so za zdravljenje potrebne elektrode, ki jih lahko vstavimo posamično 

ter tako vplivamo na njihov medsebojni položaj in posledično na porazdelitev električnega 

polja (Miklavčič et al., 1998). Za zdravljenje globoko ležečih tumorjev je torej potrebno 

bolniku prilagojeno načrtovanje zdravljenja, pri katerem na osnovi medicinskih slik bolnika 
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(npr. magnetno resonančno slikanje – MRI, ali računalniška tomografija – CT) zgradimo 

tridimenzionalni model obravnavanega bolnikovega organa skupaj s pripadajočimi 

strukturami (npr. žile) in patološkim tkivom (tj. tumorjem). Zgrajeni tridimenzionalni 

model nato uporabimo za izračun porazdelitve električnega polja glede na predvideno 

konfiguracijo (tj. število in položaj) vstavljenih elektrod. Omenjeni postopek omogoča 

natančno predvidevanje zadostne pokritosti tumorja z električnim poljem dovolj visoke 

jakosti, kar je eden od ključnih pokazateljev, ali bo zdravljenje z EKT uspešno (Miklavčič et 

al., 2006, 1998). 

Elektrokemoterapiji sorodna aplikacija, ki prav tako temelji na pojavu elektroporacije, je 

atermična ireverzibilna elektroporacija (angl. non-thermal irreversible electroporation –  

N-TIRE) (Davalos and Rubinsky, 2008; Garcia et al., 2011; Županič and Miklavčič, 

2009). V nasprotju z EKT, kjer ciljno skupino celic uniči kemoterapevtik, dosežemo pri N-

TIRE uničenje ciljne skupine celic zgolj s prisotnostjo električnega polja. Vrednost 

električne poljske jakosti je namreč višja kot pri EKT, kjer so predvidene vrednosti nad 

reverzibilnim pragom (tj. 460 V/cm za jetra) in pod ireverzibilnim pragom (tj. 700 V/cm za 

jetra); za uspešno uničenje tkiva z metodo N-TIRE je torej potrebna izpostavitev celic v 

tkivu električnemu polju jakosti nad ireverzibilnim pragom (Miklavčič et al., 2000; Šel et 

al., 2005). Ker temelji N-TIRE na pojavu elektroporacije, prav tako potrebuje bolniku 

prilagojeno načrtovanje zdravljenja za uspešno zdravljenje (Županič and Miklavčič, 2009). 

METODE  

 

Postopek načrtovanja zdravljenja z elektrokemoterapijo 

Bolniku prilagojeno zdravljenje je že uveljavljeno na področju radioterapije. Radioterapija je 

do neke mere podobna elektroporaciji, saj prav tako temelji na interakciji fizikalnega 

dejavnika (radiacija v radioterapiji in električno polje v elektroporaciji) z biološkim tkivom 

(Lecchi et al., 2008). Radioterapija je metoda zdravljenja raka, pri kateri snop usmerjene 

energije le-to s sevanjem odloži na ciljno mesto v bolnikovem telesu. Škoda, ki jo snop 

izsevane energije povzroči, ni omejena na tumorske celice, temveč zajame tudi bližnjo 

okolico; največja dovoljena količina izsevane energije je tako omejena z največjo količino 
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sevanja, ki jo izpostavljeno zdravo tkivo ob tumorju še lahko prejme (Tannock et al., 2005). 

Glavni cilj radioterapije je povzročitev toliko škode tumorskim celicam, da je njihova rast 

trajno onemogočena in se zato ne morejo več deliti. Postopek zdravljenja z radioterapijo je 

sestavljen iz korakov, ki jih prikazuje Tabela 1. 

Tabela 1: vzporednice med radioterapijo in elektrokemoterapijo globoko ležečih tumorjev. 
 

 

Radioterapija 
 

Elektrokemoterapija globoko ležečih tumorjev 

Simulacija: medicinske slike bolnika  
(CT ali kombinacija CT z MRI ali PET). 

Numerični model elektroporacije: modela 
elektroporacije na celičnem in tkivnem nivoju. 

Načrtovanje zdravljenja: določitev ciljnih območij 
tkiva z razgradnjo slik, določitev omejitev izsevane 
energije (doza), gradnja geometrije matematičnega 
modela, izračun ustreznega načrta z numeričnim 
modeliranjem in optimizacijo (število frakcij, 
položaj in jakost energijskih snopov). 

Načrtovanje zdravljenja: medicinske slike bolnika 
(CT ali MRI, možnost kombinacije s PET), 
določitev ciljnih območij tkiva z razgradnjo slik, 
gradnja geometrije matematičnega modela, izračun 
ustreznega načrta z numeričnim modeliranjem in 
optimizacijo (število in položaj uporabljenih 
elektrod), jakost uporabljenih električnih pulzov.  

Preverjanje nastavitev: medicinske slike bolnika 
(CT ali MRI) so uporabljene za preverjanje 
položaja bolnika in ciljnih območij tkiva; dodatno 
je položaj preverjen še z laserji in objekti na koži 
bolnika, ki služijo kot zaznamki (v kombinaciji z 
npr. ultrazvokom ali s podobno tehniko slikanja). 

Preverjanje nastavitev: optimalni položaji elektrod so 
poravnani z izvornimi medicinskimi slikami bolnika; 
položaj elektrod je med operativnim posegom 
preverjen z ultrazvokom. 

Izvedba zdravljenja in nadzor: izsevana energija je 
usmerjena v bolnikovo telo v skladu z načrtom 
zdravljenja. Postopek medicinskega slikanja v 
realnem času je uporabljen za nadzor nad premiki 
zaradi dihanja bolnika.  

Izvedba zdravljenja in nadzor: po vstavitvi elektrod in 
vbrizganju kemoterapevtika so sproženi električni 
pulzi; obenem so izvedene meritve tokov in napetosti 
z namenom zaznavanja morebitnih napak.  

Ocena odziva: po izvedenem zdravljenju sledijo 
meritve velikosti tumorja (ali medicinsko slikanje z 
uporabo bioloških tumorskih markerjev).  

Ocena odziva: po izvedenem zdravljenju sledijo 
meritve velikosti tumorja (ali medicinsko slikanje z 
uporabo bioloških tumorskih markerjev) in/ali 
histološka ocena (primerjava z medicinskimi slikami, 
dobljenimi pred izvedbo elektrokemoterapije). 

 

Kot prikazuje Tabela 1, gre pri primerjavi radioterapije z EKT globoko ležečih tumorjev za 

podobna postopka zdravljenja. Oba postopka namreč temeljita na načrtovanju zdravljenja 

glede na bolnikove medicinske slike (npr. CT ali MRI), ki jih uporabimo za določitev 

ciljnega območja patološkega tkiva, ki ga želimo uničiti. Z razgradnjo medicinskih slik 
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izdelamo tridimenzionalni model, ki služi kot geometrija matematičnega modela 

radioterapije (izračun izsevane doze) ali elektroporacije (izračun pokritosti z dovolj visokim 

električnim poljem pri določenem številu in trajanju pulzov, npr. 8 x 100 μs). Pred izvedbo 

zdravljenja je izvedeno še preverjanje nastavitev, po sami izvedbi pa ocena odziva tumorja 

na zdravljenje.  

Ker je načrtovanje zdravljenja na področju radioterapije uveljavljen postopek, ki velja za 

ključni dejavnik za uspešno zdravljenje, smo postopek načrtovanja zdravljenja z EKT 

zasnovali tako, da temelji na načrtovanju zdravljenja z radioterapijo (Pavliha et al., 2012) in 

posledično prispeva k lažji uveljavitvi načrtovanja zdravljenja z EKT med končnimi 

uporabniki (tj. zdravniki). 

Uvoz in pred-procesiranje medicinskih slik  

Postopek izdelave načrta zdravljenja z EKT se prične z uvozom medicinskih slik bolnika. V 

okviru postopka uvoza slik, zapisanih v standardnem formatu za shranjevanje in prenos 

medicinskih slik DICOM (National Electrical Manufacturers Association, 2009), 

preberemo vse uvožene slike in jih razvrstimo glede na serijo, v okviru katere so bile 

posnete, in glede na njihov položaj v prostoru (koordinata Z). Omenjeni metapodatki se 

nahajajo v glavi medicinskih slik kot parametri SeriesNumber in SliceLocation, in nam 

omogočajo izbiro serije, ki jo želimo uporabiti za načrtovanje zdravljenja.  

Nato izvedemo pred-procesiranje vseh slik (rezin), ki jih vključuje izbrana serija. Postopek 

pred-procesiranja je izveden na vsaki sliki posebej, zato ga lahko izvajamo večnitno (angl. 

multi-threaded), tj. na več procesorjih ali procesorskih jedrih naenkrat. Pravilna 

interpretacija medicinskih slik je določena s parametri, ki določajo ciljno območje tkiva 

(angl. Volume of Interest – VOI) in so vključeni v glavi medicinskih slik kot lastnosti 

Window Center (WC) in Window Width (WW). Lastnosti WC in WW uporabimo za 

transformacijo izvornih medicinskih slik z uporabo sigmoidne funkcije, ki jo opisuje 

Enačba 1. 

 
WW

WCvhod

e

rang
izhod 





4

1

      Enačba 1 
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Po sigmoidni transformaciji medicinske slike spremenimo tako, da izločimo morebitne 

neželene učinke zaradi intenzitetne nehomogenosti (Vovk et al., 2007), in sicer z uporabo 

javno dostopnega algoritma za odpravo nehomogenosti (Zheng et al., 2009). Po odpravi 

nehomogenosti medicinske slike filtriramo z uporabo povprečevalnega in nato še 

zameglitvenega Gaussovega filtra (σ = 3) z velikostjo okna 3 krat 3 pik. Na koncu postopka 

izvedemo dodatno transformacijo z uporabo sigmoidne funkcije s fiksnimi vrednostmi (WC 

= 20000, WW = 100, rang = 216), ki zagotovijo, da bo intenziteta medicinskih slik 

porazdeljena po celotnem šestnajstbitnem območju in z dovolj kontrasta, da bo mogoča 

razgradnja. Fiksne vrednosti sigmoidne funkcije so bile določene empirično na osnovi 

podatkov realnih primerov bolnikov. Z izvedbo zadnjega koraka je pred-procesiranje 

zaključeno in medicinske slike so pripravljene na razgradnjo. 

Razgradnja z rastjo regij (angl. region growing) 

Prvi algoritem, ki smo ga uporabili za razgradnjo medicinskih slik, je postopek rasti regij 

(angl. region growing). Algoritem smo uporabili za avtomatsko razgradnjo jeter, vendar ga 

lahko uporabimo tudi za razgradnjo drugih organov (Mancas et al., 2005). Rast regij 

določi, ali je prostorska pika (angl. voxel) del ciljne regije tako, da primerja njeno intenziteto 

z intenziteto začetnega semena, tj. prostorske pike, ki jo na začetku postopka ročno določi 

uporabnik (zaradi česar algoritma pravzaprav ne moremo opredeliti kot avtomatskega). Rast 

regij deluje v treh dimenzijah in preverja intenziteto vsake prostorske pike, ki je bila dodana 

v čakalno vrsto. Delovanje algoritma prikazuje Slika 3. 

 

Slika 3: razgradnja z uporabo postopka rasti regij. Prikazan je potek razgradnje jeter po 
40.000 (A), 400.000 (B) in vseh (C) obravnavanih prostorskih pikah jeter. 
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Za uspešno razgradnjo jeter je potrebno dopustiti odstopanje intenzitete prostorskih pik, ki 

jih želimo vključiti v ciljno območje (tj. jetra), od začetnega semena; v našem primeru smo 

odstopanje nastavili na vrednost 0.20, kar pomeni, da se nahajajo dopustne intenzitete pik, 

ki predstavljajo jetra, v območju 0.8 ∙ ௌாொܫ ൏ ோாே௎்ேூ்ܫ ൏ 1.2 ∙  ௌாொ, kjer predstavlja Iܫ

intenziteto prostorske pike in bit njeno enoto. Zaradi možnosti puščanja lahko rast regij 

poleg jeter vključi tudi neželene dele tkiva drugih organov (npr. spodnji del srca, kot to 

prikazuje Slika 3), vendar tovrstne neželene učinke razgradnje odstranimo v naslednjem 

koraku z uporabo po-procesorja.  

Razgradnja z adaptivnim upragovljanjem (angl. adaptive threshold) 

Drugi možni način razgradnje jeter, ki smo ga preizkusili, je z uporabo adaptivnega 

upragovljanja. Algoritem temelji na fizični lastnosti organa, tj. zveznosti tkiva med dvema 

sosednjima rezinama. Algoritem spreminja trenutno obdelovano rezino z uporabo pragovne 

funkcije, ki ji v vsaki iteraciji spremenimo vrednost praga in obenem primerjamo trenutno 

rezino (z uporabo normirane križne korelacije) s prejšnjo, že obdelano rezino; končno 

obdelana trenutna rezina je spremenjena z uporabo pragovne vrednosti, ki je izkazala 

največjo podobnost s prejšnjo rezino. Delovanje algoritma prikazuje Slika 4. 

 

Slika 4: algoritem adaptivnega upragovljanja (angl. adaptive threshold); prikazane so tri možne 
vrednosti (15.000, 25.000, 35.000) praga trenutne rezine (A, B, C) in prejšnja rezina (D). 

Algoritem torej upošteva, da se zunanji rob organa, ki ga razgrajujemo, med rezinama 

spreminja počasi (zvezno), zato predvideva, da je pravilna vrednost praga tista, ki povzroči 

največjo podobnost s prejšnjo rezino. Slika 4 prikazuje potek razgradnje trenutne rezine 

jeter (A, B in C), ki jo primerjamo s prejšnjo, že obdelano rezino (D). Vrednost praga 

15.000 bitov izkazuje 12-odstotno podobnost (Slika 4A, vrednost 0.12), vrednost praga 

25.000 bitov 81-odstotno podobnost (Slika 4B, vrednost 0.81), vrednost praga 35.000 
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bitov pa največjo, 95-odstotno podobnost (Slika 4C, vrednost 0.95) glede na prejšnjo, že 

obdelano rezino (Slika 4D).  

 

Slika 5: primeri treh predlog (A, B, C), ki so v uporabi pri razgradnji prve rezine jeter z 
algoritmom adaptivnega upragovljanja.  

Ker na začetku delovanja algoritem adaptivnega upragovljanja nima na voljo nobene 

predhodne rezine, je za prvo primerjavo podobnosti uporabljen nabor šestih predlog, tj. slik 

s približkom razgrajene rezine organa, ki ga razgrajujemo (npr. jeter). Adaptivno 

upragovljenje je izvedeno kot primerjava podobnosti z vsemi predlogami, ki so na voljo, 

prva rezina pa je na koncu primerjav z vsemi predlogami razgrajena glede na največjo 

izkazano podobnost s katero koli izmed predlog. Primere treh predlog prikazuje Slika 5: 

uporaba predloge torej omogoča avtomatsko inicializacijo vrednosti praga prve rezine in 

posledično omogoči razgradnjo vseh naslednjih rezin.  

Razgradnja z aktivnimi krivuljami – kačami (angl. active contours) 

Tretji algoritem, ki smo ga uporabili in dodelali za avtomatsko razgradnjo jeter, je algoritem 

aktivnih (prilagodljivih) krivulj, včasih imenovanih tudi kače (angl. active-deformable 

contours – snakes) (Kass et al., 1987). Algoritem temelji na postavitvi aktivne (prilagodljive) 

krivulje na rezino (medicinsko sliko), ki jo želimo razgraditi. Aktivna krivulja je sestavljena 

iz točk, ki se nahajajo na mestih prostorskih pik slike in se lahko premikajo po sliki glede na 

energijo okolice točke. Energija točke in njene okolice je sestavljena iz štirih energijskih 

prispevkov: elastičnosti (tj. točka aktivne krivulje naj bo glede na obod krivulje čim bliže 

sredini med dvema sosednjima točkama krivulje), ukrivljenosti (tj. točka aktivne krivulje 

naj bo čim bliže premici, ki povezuje dve sosednji točki krivulje), magnitudi energije rezine 

(medicinske slike) in smeri vektorskega polja energije rezine (medicinske slike). Energijo 

rezine (medicinske slike) izračunamo z uporabo polja gradientnega vektorskega pretoka 
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(angl. Gradient Vector Flow – GVF), ki temelji na zaznanih robovih slike; uporabili smo 

javno dostopen algoritem izračuna GVF (Xu and Prince, 1998). Primer izračunanega polja 

GVF prikazuje Slika 6. 

 

Slika 6: primer izvorne rezine (A), zaznanih robov slike (B) in izračunanega polja GVF (C). 

Vsi štirje energijski prispevki so uravnoteženi z uporabo energijskih koeficientov: na osnovi 

naših izkušenj z optimizacijo algoritmov s podatki realnih primerov bolnikov smo prispevke 

uravnotežili s koeficienti 1 (elastičnost), 3 (ukrivljenost), 9 (magnituda GVF) in 3 (smer 

GVF). Vsi energijski prispevki so normirani tako, da se nahajajo v območju vrednosti (0, 1) 

z namenom njihove medsebojne enakovrednosti. Na osnovi uravnoteženosti energijskih 

prispevkov je v vsaki iteraciji premika aktivne krivulje izračunana energija v piki, kjer se 

nahaja točka aktivne krivulje, in v vsaki izmed osmih pik v dvodimenzionalni okolici (tj. na 

isti rezini). Točka aktivne krivulje je nato premaknjena v piko z najmanjšo energijo; v 

primeru, da imajo vse okoliške točke večjo energijo od trenutne pike, ostane točka aktivne 

krivulje na istem mestu. Postopek ponovimo za vse točke aktivne krivulje, ter iterativno 

ponavljamo dovolj dolgo, da se aktivna krivulja poravna z robom organa, ki ga 

razgrajujemo (v našem primeru delovanje krivulje zaustavimo po 100 iteracijah).  

Ker je delovanje aktivne krivulje dvodimenzionalno (tj. krivulja je dvodimenzionalen 

objekt, ki se premika po eni rezini), je tridimenzionalna informacija o vseh slikah v zbirki v 

algoritem vključena tako, da je začetna aktivna krivulja trenutne rezine enaka končni 

aktivni krivulji prejšnje rezine. Ker ob razgradnji prve rezine nimamo podatka o prejšnji 

rezini, je za inicializacijo aktivne krivulje uporabljen kar algoritem adaptivnega 

upragovljanja, ki zagotovi razgradnjo prve rezine: dobljeni segment je nato uporabljen za 
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določitev točk začetne aktivne krivulje, in sicer z uporabo sledenja obrisu območja (Pavešić, 

2000). 

Po-procesiranje medicinskih slik 

Po-procesiranje je namenjeno izločanju napak, do katerih lahko privede postopek 

razgradnje (npr. puščanje pri algoritmih, ki temeljijo na intenziteti). Razviti po-procesor 

nam omogoča, da iz razgrajenih medicinskih slik izločimo dele, ki so bili pomotoma 

vključeni v razgrajeni organ (v primeru jeter gre lahko za srce, ledvice, vranico in okoliško 

maščobno tkivo).  

Po-procesorski algoritem temelji na primerjavi dveh sosednjih rezin z uporabo normirane 

križne korelacije: algoritem z uporabo erozije loči večje segmente, ki so pravzaprav manjši 

segmenti, ki so zaradi puščanja povezani med seboj s tanko vezjo. Nato vsakega od 

segmentov primerja s prejšnjo rezino: če primerjava pokaže, da nekega segmenta s trenutne 

rezine ni bilo na prejšnji rezini, ga algoritem zavrže. Poudariti je potrebno, da po-procesor 

ne zavrača segmentov, ki so posledica delitve tkiva na dva segmenta: v primeru, da je 

prejšnja rezina vključevala le en segment jeter, medtem ko sta na trenutni rezini zaznana 

dva, bo po-procesor z uporabo normirane križne korelacije ugotovil, da razdeljena segmenta 

prostorsko ustrezata enemu segmentu s prejšnje rezine in ju obdržal. 

Optimizacija in validacija algoritmov za razgradnjo 

Ker je ključnega pomena, da izdelajo algoritmi za razgradnjo modele razgrajenega organa 

pravilno, moramo njihovo delovanje ustrezno ovrednotiti (validirati). Validacijo smo izvedli 

kot dvostopenjski postopek: najprej smo delovanje algoritmov optimizirali z uporabo 

podatkovne baze slik sedmih bolnikov, ki jih je ročno razgradila radiologinja, in je služila 

kot učna množica. Nato smo delovanje optimiziranih algoritmov ovrednotili (validirali) z 

uporabo nove podatkovne baze slik štirih bolnikov, ki jih je ročno razgradila radiologinja in 

ni bila del učne množice.  

Optimizacijo smo izvedli tako, da smo najprej definirali, kateri parametri vsakega izmed 

treh algoritmov za razgradnjo jeter (rast regij, adaptivno upragovljanje in aktivne krivulje) 

so predmet optimizacije; nato smo določili njihova predvidena območja vrednosti in jih 
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iterativno spreminjali v okviru optimizacije. Rast regij smo optimizirali tako, da smo 

spreminjali vrednost parametra, ki določa dovoljeno odstopanje intenzitete od intenzitete 

začetnega semena. Adaptivno upragovljanje smo optimizirali tako, da smo spreminjali 

vrednost parametra, ki določa velikost maske filtra v okviru pred-procesiranja, in začetni 

koeficient, ki določa predvideno velikost segmenta na prvi rezini. Aktivne krivulje smo 

optimizirali tako, da smo spreminjali vrednost vseh štirih koeficientov, ki določajo 

medsebojno uravnoteženost energijskih prispevkov. 

V vsaki iteraciji smo za vsak algoritem razgradnje primerjali trenutno dobljene rezultate z 

učno množico, tj. ročno razgrajenimi modeli, ki jih je izdelala radiologinja. Primerjavo smo 

izvedli z uporabo normirane križne korelacije za vsako rezino posebej. Na koncu smo 

ovrednotili dvoje optimalnih parametrov: specifično optimalne parametre (tj. parametre, ki 

so optimalni za posamezen primer) in globalno optimalne parametre (tj. parametre, ki so 

optimalni za vse razgrajene primere).  

Po optimizaciji smo algoritme nastavili na vrednosti, ki predstavljajo globalno optimalne 

parametre. Nato smo delovanje optimiziranih algoritmov ovrednotili z razgradnjo slik 

dodatnih štirih bolnikov, ki jih je ročno razgradila radiologinja.  

Spletni grafični uporabniški vmesnik za načrtovanje zdravljenja z elektrokemoterapijo 

Postopek načrtovanja zdravljenja z elektrokemoterapijo smo vključili v spletno programsko 

opremo, ki vsebuje grafični uporabniški vmesnik za načrtovanje zdravljenja z 

elektrokemoterapijo (EKT). Ker želimo uporabo programske opreme približati zdravnikom,  

smo jo razvili tako, da je zahtevana minimalna interakcija uporabnika, saj je to ena od 

ključnih zahtev za razvoj uporabniku prilagojene programske opreme (Heymann and 

Degani, 2007). Najzahtevnejše postopke (tj. razgradnjo medicinskih slik, gradnjo 

geometrije tridimenzionalnega matematičnega modela in izračun porazdelitve električnega 

polja) smo poenostavili do te mere, da so izvedeni avtomatsko. Potek delovanja spletnega 

grafičnega uporabniškega vmesnika (angl. Graphical User Interface – GUI) za načrtovanje 

zdravljenja z EKT prikazuje Slika 7. 
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Postopek se prične z uvozom medicinskih slik 

(Slika 7A), ki omogoča nalaganje datotek 

DICOM prek spletne strani. V primeru, da 

naložene datoteke vsebujejo več serij bolnikovih 

slik, GUI omogoči izbiro ustrezne serije (Slika 

7B). Če so naložene slike že razgrajene (npr. z 

uporabo tretje programske opreme in razgrajeni 

segmenti zapisani v obliki standardnega zapisa 

DICOM), lahko izdelane segmente uporabimo 

neposredno za načrtovanje EKT (Slika 7I). Če 

slike še niso razgrajene, sledi izvedba postopkov 

avtomatske razgradnje (Slika 7C) glede na 

izbrano ciljno tkivo (npr. jetra). Ko je zgrajena 

geometrija tridimenzionalnega matematičnega 

modela, sledi ročna validacija (tj. končni 

uporabnik potrdi, da je zgrajeni 

tridimenzionalni model pravilen, kar preveri s 

temeljitim pregledom izdelanih kontur vseh 

rezin) (Slika 7D). V primeru, da avtomatsko 

razgrajeni organ ni pravilno izdelan, ima 

uporabnik možnost ročnih popravkov (Slika 

7E). Nato je uporabljen vmesnik za navidezno 

vstavitev elektrod, kjer določimo število in 

položaj uporabljenih elektrod za EKT (Slika 

7F). Sledi izračun porazdelitve električnega 

polja in optimizacija napetosti in položajev 

elektrod (Slika 7G) ter predstavitev rezultatov v 

obliki prenosljivega načrta zdravljenja (Slika 

7H). 

 

 

Slika 7: potek delovanja spletnega 
grafičnega uporabniškega vmesnika za 
načrtovanje zdravljenja z EKT. 
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REZULTATI 

Rezultati optimizacije algoritmov za razgradnjo jeter so podani v Tabeli 2, kjer so prikazane 

podobnosti slik sedmih bolnikov, ki jih je ročno razgradila radiologinja, z avtomatsko 

razgrajenimi slikami. Vsaka podobnost (P) predstavlja aritmetično sredino podobnosti vseh 

rezin serije bolnikovih slik. Podobnost je bila izračunana za specifično optimalne parametre 

(tj. parametre, ki so optimalni za posamezen primer - PS) in globalno optimalne parametre 

(tj. parametre, ki so optimalni za vse razgrajene primere - PG). Std predstavlja standardni 

odklon aritmetične sredine rezin znotraj serije.  

Tabela 2: rezultati optimizacije algoritmov za razgradnjo jeter z uporabo aritmetične sredine. 

serija 
RAST REGIJ ADAPTIVNO UPRAGOVLJANJE AKTIVNE KRIVULJE 

PS std(PS) PG std(PG) PS std(SS) PG std(PG) PS std(PS) PG std(PG)

2009122 91.2 15.9 61.1 38.9 72.2 39.1 72.2 39.1 88.2 22.1 68.8 36.3

2010093 92.7 13.7 86.8 19.0 70.1 38.1 68.1 40.2 89.7 20.7 64.5 40.1

2010122 84.7 19.6 79.9 19.2 73.4 34.5 70.1 33.9 84.6 22.3 78.6 23.6

2011022 81.1 25.5 65.7 36.0 74.0 29.1 73.2 29.5 79.4 29.1 67.2 37.1

2011042 86.6 19.4 78.2 29.0 60.0 35.6 40.1 41.6 64.8 36.6 54.8 37.9

2011062 94.4 2.1% 94.2 2.9% 80.2 13.4 80.2 13.4 87.6 14.1 67.9 36.6

2011070 92.5 4.9% 92.5 4.9% 69.3 37.8 69.3 37.8 80.3 30.9 80.3 30.9

 

aritm.sr. 

   

79.8% 

 

12.7% 
   

67.6% 

 

12.8% 
   

68.8% 

 

8.6% 

 

Ker je lahko predstavitev podobnosti serije z uporabo aritmetične sredine podobnosti vseh 

rezin v seriji zavajajoča, saj na tovrstno predstavitev rezultatov občutno vplivajo rezine, ki 

jih algoritmi za razgradnjo niso zaznali (podobnost tovrstnih rezin je 0%), smo rezultate 

predstavili še z uporabo mediane podobnosti vseh rezin v seriji.  

Rezultati so podani v Tabeli 3, v kateri so prikazane podobnosti slik sedmih bolnikov, ki jih 

je ročno razgradila radiologinja, z avtomatsko razgrajenimi slikami. Vsaka podobnost (P) 

predstavlja mediano podobnosti vseh rezin serije bolnikovih slik. Podobnost je bila 

izračunana za specifično optimalne parametre (tj. parametre, ki so optimalni za posamezen 

primer - PS) in globalno optimalne parametre (tj. parametre, ki so optimalni za vse 

razgrajene primere - PG).  
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Tabela 3: rezultati optimizacije algoritmov za razgradnjo jeter z uporabo mediane. 

 

serija 

RAST  

REGIJ 

ADAPTIVNO 

UPRAGOVLJANJE 

AKTIVNE 

KRIVULJE 

PS PG PS PG PS PG

20091223 95.6% 79.9% 92.0% 92.0% 94.0% 82.6%

20100930 95.9% 91.8% 88.8% 90.0% 95.3% 82.5%

20101221 90.3% 85.6% 88.6% 87.8% 91.0% 86.9%

20110228 88.8% 84.8% 83.7% 83.7% 88.3% 86.4%

20110421 92.6% 89.2% 73.6% 55.4% 80.2% 75.6%

20110624 94.4% 94.4% 82.7% 82.7% 91.2% 88.9%

20110707 93.4% 93.4% 87.6% 87.6% 91.5% 91.5%

 

mediana 

 

89.2% 

 

87.6% 

 

86.4% 
 

Iz rezultatov (Tabela 2 in Tabela 3) lahko vidimo, da dopušča največ optimizacije algoritem 

za razgradnjo z rastjo regij, saj omogoča doseganje do 94.4% (aritmetična sredina, 

standardni odklon 2.1%) oz. do 95.9% (mediana) podobnosti z referenčnim modelom v 

primeru specifično optimalnih parametrov. Če opazujemo globalno optimalne parametre, 

je rast regij prav tako za optimizacijo najbolj dopusten algoritem od preizkušenih, saj lahko 

z njim dosežemo globalne podobnosti z referenčnimi modeli v vrednostih 79.8% 

(aritmetična sredina, standardni odklon 12.7%) oz. 89.2% (mediana).  

Optimizaciji je sledilo končno ovrednotenje (validacija), v okviru katerega smo z uporabo 

globalno optimalnih parametrov razgradili štiri serije slik bolnikov, ki niso bile del učne 

množice. Rezultate validacije prikazuje Tabela 4. 

Tabela 4: rezultati validacije optimiziranih algoritmov za razgradnjo jeter. 

serija 
RAST REGIJ ADAPTIVNO UPRAGOVLJANJE AKTIVNE KRIVULJE 

PAS std(PAS) PMD PAS std(PAS) PMD PAS std(PAS) PMD 

V1 79.4% 24.8% 87.0% 67.3% 30.5% 76.4% 54.5% 43.0% 79.5% 

V2 87.1% 18.0% 92.5% 64.5% 35.9% 79.0% 51.7% 42.6% 70.2% 

V3 71.3% 33.1% 85.5% 67.5% 30.1% 78.0% 72.8% 28.5% 81.9% 

V4 49.6% 38.1% 70.5% 65.9% 35.7% 81.9% 58.2% 43.6% 83.7% 

  

71.9% 

 

16.2% 

 

86.3% 66.3% 

 

1.4% 78.5% 59.3% 

 

9.4% 

 

80.7% 
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Tabela 4 prikazuje rezultate validacije – podobnosti (P), predstavljene kot aritmetična 

sredina (PAS) ali kot mediana (PMD) podobnosti vseh rezin štirih serij bolnikovih slik. 

Rezultati prikazujejo, da smo z uporabo naših treh algoritmov uspešno razgradili štiri serije 

bolnikovih slik, ki niso bile del učne množice. Najmanjšo podobnost z referenčnim 

modelom smo dosegli s serijo V4 in algoritmom rasti regij (aritmetična sredina podobnosti 

49.6% s standardnim odklonom 38.1%, oz. mediana 70.5%) oz. s serijo V2 in algoritmom 

aktivnih krivulj (aritmetična sredina podobnosti 51.7% s standardnim odklonom 42.6%, 

oz. mediana 70.2%), kar pomeni, da lahko naši algoritmi razgradijo medicinske slike z jetri 

tudi v slabih pogojih, vendar z ustrezno manjšo natančnostjo. Največjo podobnost smo 

dosegli s serijo V2 in algoritmom rasti regij (aritmetična sredina podobnosti 87.1% s 

standardnim odklonom 18.0%, oz. mediana 92.5%) in ravno algoritem rasti regij se je 

izkazal kot globalno najboljši (aritmetična sredina podobnosti 71.9% s standardnim 

odklonom 16.2%, oz. mediana 86.3%). 

Algoritme za avtomatsko razgradnjo jeter smo vključili v grafični uporabniški vmesnik 

(angl. Graphical User Interface – GUI), ki je izdelan kot spletna aplikacija. Uporabniški 

vmesnik (angl. front-end) uporablja hipertekstovni označevalni jezik 5 (angl. Hyper-Text 

Markup Language 5 – HTML5) in JavaScript (JS) za izdelavo vsebin in interakcijo z 

uporabnikom. Jedro vmesnika (angl. back-end) je aplikacija programskega okolja Matlab 

(Mathworks, Nantick, MA, ZDA), ki jo uporabniški vmesnik zažene prek asinhronega klica  

JS/XML (angl. asynchronous JS and XML – AJAX) z uporabo PHP hiper-tekstovnega  

pred-procesorja (angl. PHP HyperText Preprocessor – PHP; The PHP Group, 2001-2012). 

Tridimenzionalni prikaz je izveden z uporabo knjižnice X Toolkit (XTK; The X Toolkit 

Developers, 2012), ki temelji na spletni grafični knjižnici – angl. Web Graphics Libraray 

(WebGL). GUI spletne aplikacije za načrtovanje zdravljenja z elektrokemoterapijo 

prikazuje Slika 8, kjer so prikazani trije zasloni: začetni zaslon (Slika 8A), vmesnik za izbiro 

serije (Slika 8B, postopek iz Slike 7B) in primer zgrajenega tridimenzionalnega modela jeter 

z žilami in identificiranim tumorjem (Slika 8C). Izdelani grafični uporabniški je izrisan na 

uporabnikovi napravi (tj. v uporabnikovem spletnem brskalniku), medtem ko so vsi 

izračuni, ki vključujejo razgradnjo medicinskih slik in porazdelitev električnega polja, 
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izvedeni na strežniku. Omenjeni način delovanja omogoča, da uporabnikova naprava ni 

obremenjena zaradi delovanja programske opreme. 

 

Slika 8: grafični uporabniški vmesnik spletne aplikacije za načrtovanje zdravljenja z EKT. 

 
ZAKLJUČKI  

 

V zadnjem desetletju so aplikacije, ki temeljijo na pojavu elektroporacije, dozorele in 

dosegle rabo v kliničnem okolju. Elektrokemoterapija (EKT) je sicer že v klinični rabi za 

zdravljenje površinskih metastaz kožnega melanoma. S predstavljenimi postopki 

načrtovanja zdravljenja, ki smo jih vpeljali med prvimi, bo tako laže dosegla tudi zdravljenje 

globoko ležečih tumorjev, kjer je načrtovanje zdravljenja ključnega pomena. 

Postopek načrtovanja zdravljenja smo poenotili tako, da smo razvili in ovrednotili 

algoritme, ki omogočajo avtomatsko razgradnjo medicinskih slik in gradnjo matematičnih 

tridimenzionalnih modelov želenih organov (npr. jeter). Zaradi modularne zasnove je 

naknadna vključitev algoritmov za razgradnjo drugih organov enostavna.  

Postopke razgradnje in izračuna porazdelitve električnega polja smo vključili v spletno 

programsko opremo za načrtovanje zdravljenja z EKT, ki vključuje grafični uporabniški 

vmesnik in omogoča zdravnikom, da izdelajo načrt zdravljenja brez inženirskega predznanja 

ali neposredne inženirske podpore. Omogočeno je tudi nalaganje že razgrajenih slik, kar 

omogoča ovrednotenje primerov pacientov, ki so že bili zdravljeni z EKT. Ovrednotenje 

primerov že zdravljenih pacientov bo omogočilo zdravnikom demonstracijo, da je za 

uspešno zdravljenje zares ključnega pomena celotna pokritost tumorja z električnim poljem 

dovolj visoke jakosti. Uporaba programske opreme za načrtovanje zdravljenja z EKT bo 

tako prispevala k pravilnemu izvajanju zdravljenja z EKT.   
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IZVIRNI PRISPEVKI K ZNANOSTI 

Na osnovi rezultatov te doktorske disertacije prosim za priznanje naslednjih izvirnih 

prispevkov k razumevanju ožjega znanstvenega področja: 

 
VZPOSTAVITEV POSTOPKOV ZA BOLNIKU PRILAGOJENO 
NAČRTOVANJE ZDRAVLJENJA GLOBOKO LEŽEČIH TUMORJEV Z 
ELEKTROKEMOTERAPIJO 

Vzpostavili smo postopke bolniku prilagojenega načrtovanja zdravljenja globoko ležečih 

tumorjev z elektrokemoterapijo, ki so zasnovani na osnovi sorodnih postopkov načrtovanja 

zdravljenja radioterapije. Postopki načrtovanja zdravljenja, ki smo jih razvili, temeljijo na 

obdelavi bolnikovih medicinskih slik in razgradnji relevantnih tkiv: obravnavanega organa 

(npr. jeter), patološkega tkiva (tumorja) in ostalih relevantnih tkiv (npr. žil). Razviti 

postopki omogočajo učinkovito izvedbo elektrokemoterapije globoko ležečih tumorjev. 

 
OPTIMIZACIJA IN VREDNOTENJE POSTOPKOV ZA AVTOMATSKO 
RAZGRADNJO MEDICINSKIH SLIK JETER ZA BOLNIKU PRILAGOJENO 
NAČRTOVANJE ZDRAVLJENJA Z ELEKTROKEMOTERAPIJO 

Razvili smo algoritme za avtomatsko razgradnjo jeter z medicinskih slik, ki so v uporabi za 

načrtovanje bolniku prilagojenega zdravljenja z elektrokemoterapijo. Algoritmi, ki smo jih 

razvili (rast regij, adaptivno upragovljanje in aktivne konture), so validirani na osnovi 

radiološkega ekspertnega znanja, in sicer z uporabo sedmih modelov jeter za optimizacijo 

delovanja in dodatnih štiri modelov jeter za validacijo delovanja optimiziranih algoritmov. 

 
RAZVOJ PROGRAMSKE OPREME ZA BOLNIKU PRILAGOJENO 
NAČRTOVANJE ZDRAVLJENJA TUMORJEV Z ELEKTROKEMOTERAPIJO 

Razvili smo programsko opremo, ki vključuje vse postopke, ki so potrebni za načrtovanje 

zdravljenja z elektrokemoterapijo: vmesnik za uvoz bolnikovih medicinskih slik, algoritme 

za avtomatsko razgradnjo medicinskih slik, vmesnik za virtualno vstavitev elektrod, 

algoritme za izračun porazdelitve električnega polja v tkivih in vmesnik za prikaz izdelanega 
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načrta zdravljenja. Programska oprema trenutno omogoča avtomatsko razgradnjo dveh 

tipov tkiva: jeter in kosti. Zaradi modularne zasnove pa omogoča vključitev dodatnih 

algoritmov za razgradnjo drugih tkiv. S programsko opremo upravljamo prek uporabniku 

prijaznega grafičnega uporabniškega vmesnika, ki je zasnovan kot spletna stran in zatorej 

omogoča oddaljeno načrtovanje zdravljenja (tj. telemedicina).  
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INTRODUCTION 

ELECTROPORATION 
 

When the biological cell is exposed to an externally applied electric field of adequate 

strength, the cell membrane becomes transiently permeabilized (Kotnik et al., 2010). The 

phenomenon that is termed electroporation (Neumann et al., 1982), sometimes also 

referred to as electropermeabilization (Šel et al., 2005), allows the material from outside the 

cell to traverse the plasma membrane, which would be otherwise not possible. 

Electroporation can be performed by generating external electric field using an electric 

pulse generator (Puc et al., 2004) that delivers electric pulses in the near proximity of the 

target group of cells using electrodes (Županič et al., 2008).  

Electroporation is considered to be a universal method and platform technology because all 

types of cells (i.e. animal, plant, and microorganism) can be successfully electroporated 

(Miklavčič et al., 2012). Many applications of electroporation have been already developed, 

e.g. electrochemotherapy of tumors (Mir et al., 1991; Serša and Miklavčič, 2008), non-

thermal irreversible electroporation for tissue ablation (Garcia et al., 2011; Rubinsky et al., 

2007), gene therapy (Heller and Heller, 2010), food preservation (Toepfl et al., 2007), and 

others (Daugimont et al., 2010; Gusbeth et al., 2009; Ušaj et al., 2010). 

CLINICAL APPLICATIONS OF ELECTROPORATION 

Electrochemotherapy (ECT) 

Currently, the most widely clinically used electroporation-based application is 

electrochemotherapy (ECT) (Miklavčič et al., 2012) which improves chemotherapy by 

enhancing uptake of cytotoxic drugs (e.g. bleomycin or cisplatin) due to electroporation 

(Orlowski et al., 1988; Serša et al., 1995).  The procedure is done by first injecting the 

cytotoxic drug to the patient. Then, the application of electric pulses is performed using an 

electric pulse generator (i.e. electroporator). In case of intravenous bolus injection of the 

cytotoxic drug, the electric pulses need to be applied at least 8 minutes after injection, i.e. 
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the time when the cytotoxic drug is expected to reach the pharmacological peak in tumor 

due to circulation (Mir et al., 2006). Because ECT is based on reversible electroporation 

(i.e. increase of the plasma membrane permeability is temporary), strength of the applied 

electric field needs to be above reversible electroporation threshold and below irreversible 

electroporation threshold (Miklavčič et al., 2006).  

ECT has already been in clinical use for treating cutaneous metastases of skin melanoma in 

more than 100 clinical centers in Europe (Miklavčič et al., 2012). Because cutaneous 

metastases are small in size, successful ECT treatment is ensured by following standard 

operating procedures (SOP) which were devised for treating superficial tumor nodules 

using fixed-geometry needle or plate electrodes (Mir et al., 2006). ECT of cutaneous 

metastases of skin melanoma proved to be a successful method, with an 85% objective 

response rate (Mali et al., 2013; Marty et al., 2006). 

Recently, however, ECT has been advancing towards treating deep-seated tumors 

(Miklavčič et al., 2010) in liver (Edhemović et al., 2011), bone (Fini et al., 2011), and 

brain (Agerholm-Larsen et al., 2011; Linnert et al., 2012; Mahmood and Gehl, 2011). 

Since deep-seated tumors are not accessible using the type of electrodes used for treating 

cutaneous metastases, and due to diversity in shape and size of such tumors, ECT of deep-

seated tumors requires long-needle electrodes that are inserted individually (i.e. the 

electrodes are not part of a fixed-geometry electrode array, but are positioned one by one) 

(Edhemović et al., 2011). The diversity of tumor shape, size and location, and the use of 

long-needle electrodes impose patient-specific treatment planning for ECT of deep-seated 

tumors (Pavliha et al., 2012) since SOP are not appropriate for treatment of such tumors.  

Non-thermal irreversible electroporation for tissue ablation (N-TIRE) 

Another important electroporation-based application is non-thermal irreversible 

electroporation (N-TIRE) which, like electrochemotherapy, uses electroporation for 

ablating pathological tissue, i.e. tumors (Županič and Miklavčič, 2009). N-TIRE is a non-

thermal ablation technique (Davalos and Rubinsky, 2008) and requires the strength of the 

applied electric field to reside above irreversible electroporation threshold (Županič and 
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Miklavčič, 2011) for successful treatment. N-TIRE has been used for ablation of tumors in 

liver (Charpentier et al., 2011), pancreas (Charpentier et al., 2010), brain (Garcia et al., 

2011), and soft-tissue (Neal et al., 2011). When N-TIRE is used for treating deep-seated 

tumors, patient-specific treatment planning is also needed (Županič et al., 2012). 

TREATMENT PLANNING OF ELECTROPORATION-BASED TREATMENTS 

Designing the treatment planning procedure 

In Article 1, we stipulated that electroporation-based treatments such as ECT and N-TIRE 

require patient-specific treatment planning for treatment of deep-seated tumors (Pavliha et 

al., 2012) and suggested the treatment planning procedure by exposing parallelisms to 

radiotherapy (RT) (Lecchi et al., 2008) where treatment planning has been of paramount 

importance for the success of RT in the last 50 years. RT treatment planning served us as 

the basis for establishing ECT treatment planning procedure, the latter consisting of patient 

medical imaging (by Magnetic Resonance Imaging – MRI, or by Computed Tomography 

– CT), construction of the model geometry, calculation of a suitable plan by numerical 

modeling and optimization (number and positions of electrodes used), and definition of 

intensity of the applied electric pulses. 

Development and validation of segmentation algorithms  

Construction of the model geometry is an important step of ECT treatment planning. The 

model geometry is generated by performing image segmentation, i.e. extraction of relevant 

tissue. In Article 2, we presented three algorithms that perform automatic liver 

segmentation for ECT treatment planning. Automatic segmentation of relevant tissue 

namely enables the end-user (i.e. clinician) to obtain model geometry without the need for 

manual tissue delineation which is time-consuming (e.g. it may take up to six hours for a 

clinician to manually delineate relevant tissue of a patient) (Paulides et al., 2010). The 

functioning of segmentation algorithms was optimized using a training dataset consisting of 

seven patient cases that were previously manually segmented by a radiologist. Relevant 

parameters of each algorithm were optimized and optimal parameters were determined 
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based on similarities of automatically segmented cases to manually segmented cases. Finally, 

the so obtained optimal parameters were then used to perform automatic segmentation of 

four additional patient cases that were previously manually segmented by a radiologist, and 

were not part of the training dataset. 

Integrated software with graphical user interface for treatment planning 

One of the possibilities to facilitate ECT treatment planning is to develop treatment 

planning software that embeds execution of all required procedures: import of patient 

medical images, image segmentation for model geometry generation, possibility of virtual 

electrode insertion, and calculation of a suitable plan by numerical modeling and 

optimization. In Article 3, we presented development of a web-based ECT treatment 

planning software with an easy-to-use graphical user interface. The software requires the 

medical images to be uploaded, and upon selection of the preferred algorithm (e.g. active 

contours that are optimized for liver segmentation, or fixed thresholding that is optimized 

for bone segmentation, etc.) the automatically generated 3D model of the relevant organ is 

presented to the end-user (i.e. clinician). Finally, the end-user determines the number and 

direction of the electrodes inserted into the generated 3D model, and the calculations of the 

electric field are executed and presented to the user. 
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AIMS OF THE DOCTORAL THESIS 

The aims of the doctoral thesis are to establish the procedure of electrochemotherapy 

(ECT) treatment planning, develop validated automatic segmentation algorithms for liver 

segmentation, and construct integrated electrochemotherapy treatment planning software. 

Namely, ECT of deep-seated tumors requires patient-specific treatment planning but 

currently lacks standardization. Therefore, the ECT treatment planning procedure we 

established may serve as the basis for further ECT treatments. We founded ECT treatment 

planning procedure on the radiotherapy example where treatment planning has been 

adopted by the clinicians for more than 50 years. 

Despite its complex inner functioning (i.e. the algorithms that form treatment planning are 

state-of-the-art procedures) patient-specific ECT treatment planning needs to be simplistic 

from the user’s point of view. Therefore, we included validated automatic segmentation 

algorithms for model generation as part of the developed treatment planning software in 

order to minimize the time required for generating treatment plans. Moreover, all the 

procedures which are part of treatment planning (i.e. patient medical images import, image 

segmentation, virtual electrode insertion, and electric field distribution calculation) are 

embedded in a web-based graphical user interface of the ECT treatment planning software. 

The graphical user interface allows the use of the software without engineering or computer 

knowledge, while the form of a web-based application facilitates treatment planning and 

contributes to a wide use of electroporation-based treatments since treatment planning can 

be performed remotely. 
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Abstract 

Electroporation is the phenomenon that occurs when a cell is exposed to a high electric 

field, which causes transient cell membrane permeabilization. A paramount 

electroporation-based application is electrochemotherapy, which is performed by delivering 

high-voltage electric pulses that enable the chemotherapeutic drug to more effectively 

destroy the tumor cells. Electrochemotherapy can be used for treating deep-seated 

metastases (e.g. in the liver, bone, brain, soft tissue) using variable-geometry long-needle 

electrodes. To treat deep-seated tumors, patient-specific treatment planning of the 

electroporation-based treatment is required. Treatment planning is based on generating a 

3D model of the organ and target tissue subject to electroporation (i.e. tumor nodules). 

The generation of the 3D model is done by segmentation algorithms. We implemented 

and evaluated three automatic liver segmentation algorithms: region growing, adaptive 

threshold, and active contours (snakes). The algorithms were optimized using a seven-case 

dataset manually segmented by the radiologist as a training set, and finally validated using 

an additional four-case dataset that was previously not included in the optimization dataset. 

The presented results demonstrate that patient’s medical images that were not included in 

the training set can be successfully segmented using our three algorithms. Besides 

electroporation-based treatments, these algorithms can be used in applications where 

automatic liver segmentation is required. 
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1. Introduction  

Electroporation is the phenomenon that occurs when a biological cell is exposed to an 

adequately high electric field, which results in the cell membrane becoming transiently 

permeabilized (Kotnik et al., 2010). Electroporation is considered to be a universal method 

and platform technology since all types of cells (animal, plant, and microorganisms) can be 

electroporated (Miklavcic, 2012). A paramount electroporation-based application is 

electrochemotherapy (Mali et al., 2013; Serša and Miklavčič, 2008) which enhances 

chemotherapy outcome due to transient permeabilization of targeted cell membranes: 

because of the externally applied electric field, electroporation facilitates the 

chemotherapeutic drug diffusion through the plasma membrane into the cells, which 

would be otherwise hampered, because of the impaired or slow transport of the 

chemotherapeutics that are used in electrochemotherapy (Sersa et al., 2008).  

Electrochemotherapy is performed by high-voltage electric pulses delivery using applicators 

(i.e. electrodes) that are in contact with (or located near the) target tissue. 

Electrochemotherapy has already been introduced into clinical use for treating skin 

melanoma using plate or needle electrodes with a fixed geometry; the use of such electrodes 

imposes following predefined standard operating procedures for a successful treatment 

(Marty et al., 2006; Mir et al., 2006). Recently, however, electrochemotherapy has been 

introduced to clinical trials for treating deep-seated metastases in liver (Edhemovic et al., 

2011), bone (Fini et al., 2011), brain (Agerholm-Larsen et al., 2011; Linnert et al., 2012; 

Mahmood and Gehl, 2011), and soft tissue (Neal, II et al., 2011). Electrochemotherapy of 

deep-seated tumors imposes the use of variable-geometry long-needle electrodes introduced 

either percutaneously or during open-surgery (Miklavčič et al., 2012). Hence, only 

following the standard operating procedures cannot ensure success of the treatment, and 

patient-specific treatment planning is required for effective electrochemotherapy of deep-

seated tumors (Pavliha et al., 2012).  

Another important electroporation-based application is termed non-thermal irreversible 

electroporation (N-TIRE) and is used for tissue ablation performed using an externally 

applied electric field with electric field strengths and higher number of pulses than the 
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values used for electrochemotherapy (Davalos et al., 2005). Nonetheless, the procedure is 

technologically very similar to electrochemotherapy and, also, requires patient-specific 

treatment planning (Županič and Miklavčič, 2009). 

To prepare a robust treatment plan for electroporation-based treatments, an anatomical 

model that is built from medical images (Magnetic Resonance Imaging – MRI) needs to be 

constructed first (Miklavcic et al., 2010). Construction of such a model is based on the 

acquisition of the patient's medical images and relies on processing the images in order to 

perform relevant-tissue extraction (i.e. image segmentation) (Linguraru et al., 2012). Image 

segmentation, then, serves as the basis for generating a three-dimensional model consisting 

of the relevant healthy tissue (e.g. liver) and pathological tissue (i.e. tumors) (Pahr and 

Zysset, 2009). Vessels may also be segmented and included into the model (Chi et al., 

2011) since vessel positions have to be taken into account when defining electrodes’ entry 

direction and relative positions. Then, a Finite-Element Model (FEM) is built and using 

the defined electrode parameters (number, dimensions, position), the distribution of the 

electrical field is calculated and optimized (Zupanic et al., 2012; Županič et al., 2008) and 

finally presented to the attending physician. 

In order to establish the concept of electroporation-based treatment planning, we follow 

radiotherapy treatment planning as the basis (Lecchi et al., 2008) using parallelisms and 

similarities between the planning procedures (Pavliha et al., 2012). Since development of a 

user-friendly treatment planning would simplify electroporation-based preoperative 

procedures, we opt towards developing treatment planning software that will not require 

any prior engineering knowledge from its end-user (e.g. the attending physician). The 

whole treatment planning software needs to perform as automatically as possible, i.e. with 

minimum of interaction by the clinician, and the most challenging task is development and 

implementation of an automatic image segmentation algorithm. Within the clinical study 

of electrochemotherapy of colorectal metastases in the liver (Edhemovic et al., 2011), we 

developed treatment planning procedure that includes liver segmentation. After 

implementing the segmentation algorithms and concluding the segmentation procedures, 

the latter were additionally modified using optimization results obtained using a training 
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set of seven cases that were previously manually segmented by a radiologist. Finally, 

additional four cases were manually segmented by a radiologist and used for the final 

validation of the segmentation procedures. 

In this study, we evaluated three different liver segmentation algorithms that can be used 

for electroporation-based treatment planning: region growing, adaptive threshold and 

active contours. Region growing was selected for evaluation because despite its simplicity 

(i.e. segments are included solely based on their intensities) this algorithm is robust and can 

provide good results if its basic drawbacks (e.g. oversegmentation due to leakage) are 

eliminated (Heimann et al., 2004) using a postprocessor. Our implementation of the 

adaptive threshold algorithm was evaluated because this algorithm is based on a physical 

property, i.e. continuity of the tissue: segments on two neighboring slices are expected to be 

minimally different, which although being an intuitive solution which can be used as 

initialization of other segmentation methods (Casciaro et al., 2012), it proved to be 

accurate enough to be used as a standalone method for liver segmentation. Finally, the 

active contours algorithm (Kass et al., 1987) based on the Gradient Vector Flow (GVF) 

(Xu and Prince, 1998) was evaluated because of its insensitivity for intensity-based 

anomalies (e.g. inhomogeneity, or thin bonds connecting different segments such as the 

liver and e.g. kidneys) and possibility of influencing the movement of the contour by 

balancing the coefficient that influence attraction of the contours by the image or by the 

contour’s inner properties. All three segmentation algorithms were optimized on a training 

set of seven cases, i.e. quantitatively assessed using real case data obtained from a 

radiologist. Finally, algorithms were validated using additional four real cases obtained from 

a radiologist, therefore accuracy of how their results are produced is known. 
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2. Methodology  

2.1. Automatic Liver Segmentation 

2.1.1. Importing DICOM Images  

The segmentation procedure begins with importing the patient’s images into the treatment 

planning software. The latter is a MATLAB application, developed in MATLAB R2012a 

(Mathworks, Nantick, MA, USA) using the Image Processing Toolbox and Parallel Processing 

Toolbox. The procedure for loading images loads all DICOM (Digital Imaging and 

Communications in Medicine) (National Electrical Manufacturers Association, 2009a) files 

from the user-defined folder, and reads their DICOM headers’ SeriesNumber parameter in 

order to determine the number of different acquisition series present in the folder. Then, an 

image from every series is presented to the end-user (e.g. the attending physician); an image 

from every acquisition series is displayed and labeled using the original label that was stored 

at acquisition time and is read from the DICOM header as the string stored in the 

SeriesDescription parameter. Finally, the end-user determines which acquisition series will 

be used for planning of the electroporation-based treatment.   

After that, all the images from the selected acquisition series are loaded and sorted 

according to their spatial location (i.e. according to their Z-index which can be read from 

the DICOM header as the SliceLocation parameter) using a common bubble-sorting 

algorithm. If all obtained Z-indexes after bubble-sorting are not evenly distributed, empty 

slices are inserted where the slices are detected as missing. However, since missing slices 

may indicate corruption of the patient’s images collection, the software does not try to 

interpolate the missing slices but notifies the end-user instead.  

Besides the image data, essential DICOM metadata is loaded; the metadata structure 

appended to the slices includes these parameters: Width, Height, SliceThickness, 

PixelSpacing, Modality, AcquisitionDate, BitsAllocated, and Volume of Interest (VOI) 

parameters WindowCenter (WC) and WindowWidth (WW) which are most important. 

Namely, WC and WW determine how source image data need to be interpreted when 
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displayed; therefore, an initial sigmoid transformation using parameters WC and WW 

needs to be performed first for the image data to be displayed correctly. The latter is done 

within the preprocessing procedure.   

2.1.2. Preprocessing 

For segmentation algorithms to perform without problems, the imported slices first need to 

be preprocessed. Preprocessing is a procedure which is executed on each slice separately; 

therefore, the procedure is non-recursive and can be run in parallel using multiple 

processors or processor cores. Since the preprocessing procedure comprises of several steps, 

the steps are marked for debugging and algorithm evaluation purposes by storing partial 

results (i.e. partially preprocessed slices) into separate layers, starting with the source slices 

(i.e. slices stored as DICOM data), which enables the developers of the algorithms to have a 

clear overview of the whole preprocessing procedure. 

Interpretation of imported (i.e. source) slices is defined by the Volume-of-Interest (VOI) 

parameters (i.e. Window Center – WC, and Window Width – WW) that are stored as 

DICOM metadata. Since WC and WW differ from slice to slice, each slice first needs to be 

transformed from the imported data values (i.e. source layer) to the normal values (i.e. 

original layer) which are defined by the VOI parameters. The transformation can be 

performed using a sigmoid function as defined by the DICOM standard (National 

Electrical Manufacturers Association, 2009b); the transformation is described using 

Equation 1. 
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As seen in Figure 1, such a transformation can be used for multiple purposes. When the 

WW parameter is small (ܹܹ → 1), the sigmoid function (Figure 1B) changes into an 

approximation of a step function (Figure 1A) and can be used for thresholding, the WC 

parameter being the threshold value and the output value being Boolean with possible 

values (0, output_range). When the WW parameter is large (e.g. WW > output_range), the 

sigmoid function changes into an approximation of a linear function (Figure 1C) and can 
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be used for linear transformations, the output value residing in the range (0, output_range) 

depending on the WC and WW parameter values. 

 

Figure 1. Sigmoid transformation function for preprocessing purposes.  

Presented is an example sigmoid function (B), with approximations of the step function (A: WC 

= 512, WW = 1) and linear function (C: WC = 512, WW = 2048). 

After transforming the source slices into original slices using the transformation from Eq.1 

and parameter values (WC, WW, and output_range) from the DICOM metadata, the slices 

are then de-biased. De-biasing is a procedure that removes intensity inhomogeneity (Vovk 

et al., 2007) that is caused because the magnetic field in the area where the patient is 

positioned is not equally intense (i.e. the magnetic field is more homogeneous in the focal 

part of the device); a publicly available  inhomogeneity correction algorithm was 

implemented for de-biasing (Zheng et al., 2009). Then, filtering of the slices, which is 

necessary for noise elimination, is performed by applying an average and a Gaussian blur 

filter (ߪ ൌ 3), both with window sizes of 3x3 pixels. Finally, another sigmoid 

transformation is applied to the slices using fixed VOI parameters (WC=20000, WW=100, 

output_range=216) which ensures the intensity distribution of the slices is redistributed in 

the whole 16-bit range regardless of the source slices’ range, and an adequate contrast which 

is dependent on the WW parameter. The fixed VOI values were selected based on our 

experience using real case data, and assure that the liver segment will have an appropriate 

intensity value range for the segmentation to be successful. After these procedures are 
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applied, the resulting slices are stored as preprocessed slices (i.e. on a separate layer) and are 

ready for segmentation. 

2.1.3. Referential Slice 

First, we define the referential slice as the slice in the patient’s medical images collection 

with a high probability to include a large liver segment. We define ZREF as the index (i.e. 

spatial location) of the referential slice using Equation 2: 

  )65.0( MAXREF ZceilZ   (Eq.2) 

where ZMAX is the number of all the slices in the patient’s medical images collection and the 

constant 0.65 was found empirically on real case data. Using Equation 2, we have a high 

probability of obtaining a referential slice with a liver segment that is morphologically 

similar to the liver segment shown in Figure 2B. 

 

Figure 2. An example three-dimensional liver object.  

The presented object consists of 72 slices (ZMAX=72, A) and includes slice ZREF=47 as the 

referential slice (B). 
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The identified referential slice serves as the beginning point of segmentation, i.e. the slice 

where segmentation is initiated, and its identification is independent of the chosen 

segmentation algorithm. Hence, there is a high probability that the referential slice will 

include a liver segment as the one shown in Figure 2B. For region growing, the referential 

slice is used as the slice that is presented to the end-user (e.g. attending physician) in order 

to place the initial seed on the slice; for adaptive threshold (and also for active contours 

which use adaptive threshold for contour initialization), the referential slice is used for 

comparing the dynamically thresholded slice to the presets that include similar liver 

segments, and marking the threshold value with the highest similarity to any of the presets 

as the initial liver segment. 

2.1.4. Region Growing Segmentation Algorithm 

We first implemented an intensity-based segmentation algorithm known as the region 

growing algorithm. The latter determines whether voxels are part of the target region or not 

by comparing their intensities to the intensity of the initial seed. The initial seed is a voxel 

manually selected by the end-user (e.g. the attending physician) at the beginning of the 

procedure; in our case, the referential slice is presented to the end-user who is required to 

click on the liver segment where there are no internal liver structures such as vessels or 

tumor nodules. The pixel clicked then serves as the initial seed voxel. 

The region growing segmentation algorithm works in three dimensions and evaluates the 

voxels that are scheduled into the queue. At the beginning, a single voxel is added to the 

queue, namely the initial seed. The algorithm examines the current voxel in the queue by 

comparing the intensity of every current voxel's neighbor to the intensity of the current 

voxel, as shown in Figure 3 where an array of 3x3x3 voxels is displayed and the middle 

voxel represents the current voxel (i.e. 26-connected neighbors). 



SCIENTIFIC ARTICLES   
 

32   

 

Figure 3. Representation of the initial seed voxel and its 26 neighbors. 

Since intensity of the target region varies in all three dimensions due to inhomogeneity, it is 

imperative to allow some intensity deviation when evaluating if the neighboring voxels 

belong to the target region. The allowed intensity deviation is defined using a threshold 

deviation value (e.g. setting the threshold deviation value to 0.20, which is the value we 

used, determines the intensities that are acceptable for inclusion into the target region; the 

determined intensities reside in the range 0.8 ∙ ௌாா஽ܫ ൏ ஼௎ோோாே்ܫ ൏ 1.2	 ∙  ௌாா஽, where Iܫ

denotes the voxel's intensity and a bit is its unit). Therefore, any of the evaluated neighbor 

voxels that have the intensity in the defined range are marked as part of the target region by 

being added to the queue. After all the neighbors of the current voxel are evaluated, the 

algorithm evaluates the next voxel in the queue; the next voxel becomes the current voxel 

and its neighbors are evaluated. The procedure is repeated until there are no voxels left in 

the queue. Finally, all the voxels that are stored in the queue represent the target region 

which in our case is the liver. Figure 4 displays progress of the segmentation based on 

region growing after 40.000 evaluated voxels (A), after 400.000 evaluated voxels (B), and 

after all the voxels in the queue have been evaluated (C). 
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Figure 4. Progress of the region growing algorithm performing liver segmentation.  

Presented is the functioning of the algorithm after 40.000 evaluated voxels (A), after 400.000 

evaluated voxels (B), and after all the voxels have been evaluated (C). The initial seed is located 

at X=192, Y=209, Z=47. 

Due to leakage, region growing may include unwanted segments (e.g. the lower part of the 

heart, as seen in the upper right part of Figure 4C) which are later eliminated by the 

postprocessing procedure.  

2.1.5. Adaptive Threshold Segmentation Algorithm 

The second liver segmentation algorithm that we evaluated is adaptive threshold algorithm. 

We developed this algorithm as an upgraded threshold-based algorithm that executes 

filtering of the current slice using a threshold function while sweeping the intensity 
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threshold value and at the same time comparing the currently filtered slice to the previous 

already-segmented slice (i.e. the maximum similarity criterion). The intensity threshold 

value is swept over the whole intensity range, and the similarity comparison is done using 

normalized cross-correlation which performs segment area comparison (i.e. surface 

overlap). Similarity to the previous slice is chosen as the criterion for segment 

determination of adaptive threshold algorithm because the difference in liver shape and size 

between two neighboring slices is expected to be minimal; therefore, choosing similarity 

with the previous properly segmented slice as the criterion ensures that the current slice will 

also be segmented properly. Hence, the error of such a procedure is cumulative and shall 

the segmentation fail on one slice, all the following slices will be improperly segmented as 

well. The procedure is shown in Figure 5, where the current slice with three different 

threshold values (Figures 5A, 5B, and 5C) is compared to the previous slice (Figure 5D). 

     

Figure 5. Adaptive threshold algorithm functioning. 

Demonstrated is the functioning of the algorithm comparing a slice while sweeping the intensity 

threshold value; presented are three examples where the intensity threshold value is set to 15.000 

bits and similarity is 0.12 (A), 25.000 bits and similarity is 0.81 (B) and 35.000 bits and 

similarity is 0.95 (C); the comparison is done to the previous already-segmented slice (D). 

 

The comparison results (i.e. similarity) which are obtained using normalized cross-

correlation are stored during sweep for each intensity threshold value. After the intensity 

threshold value sweep is done, the intensity threshold value with the highest similarity (i.e. 

the maximum normalized cross-correlation) is selected, and the current slice is, finally, 

transformed using the selected intensity threshold value. The procedure is started from the 

referential slice and repeated on the following slices until the end of the slices collection; 

then, the procedure is restarted from the referential slice to the beginning of the slices 
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collection. If the highest similarity is lower than a certain similarity threshold, the 

algorithms determines the segment has ended and empties the current and all the following 

(or previous, depending on the segmentation Z-direction) slices; in our case, the similarity 

threshold was set to 0.70 based on our experience on real case data. Moreover, since the 

referential slice has no prior slices it could be compared to, a set of six presets that include 

various possible liver segments is used instead, and the maximum similarity to any of the 

presets indicates the final intensity threshold value for the referential slice. Three out of six 

example presets that are used for thresholding the referential slice are shown in Figure 6.  

     

Figure 6. Three example liver presets used by the adaptive threshold algorithm.  

The preset are used for determining the final intensity threshold value of the referential slice. 

 

2.1.6. Active Contours Segmentation Algorithm 

The third algorithm for performing liver segmentation that we evaluated for 

electroporation-based treatment planning is the active contours segmentation, sometimes 

referred to as the snakes segmentation algorithm. This algorithm is based on placing a 

deformable (i.e. active) contour, which is a closed curve made of points, on the same 

location as certain voxels (i.e. the initial contour position). Then, for each point of the 

active contour (located at the current voxel), the energy of the current and all its 

neighboring voxels is calculated based on four energy contributions: elasticity of the 

contour’s point in the current voxel, curvature of the contour’s point in the current voxel, 

magnitude of intensity-based energy in the neighboring voxels, and direction of the 

intensity-based energy in the current voxel. Each point of the active contour is, then, moved 

to the voxel with the lowest energy. The procedure is repeated until the active contour 

reaches the desired location (e.g. after a defined number of iterations). 
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The active contours segmentation algorithm is initiated by placing an initial active contour 

on top of the referential slice. The active contour is attracted by the edges in the image 

(Kass et al., 1987); therefore, it is imperative to initialize the active contour by placing it 

near the edge of the desired segment (i.e. the liver). Hence, the adaptive threshold 

segmentation algorithm is used to generate the initial active contour by segmenting the 

referential slice and transforming the edge of the segment identified on the referential slice 

into a closed curve with points sorted according to their location on the segment’s 

circumference. Moreover, the number of all the points in the active contour is reduced by 

decimation; in our case, the number of circumference pixels between two active contour 

points is limited to 8. Next, the image energy is calculated as the Gradient Vector Flow 

(GVF) of the image; a publicly-available GVF calculation algorithm  (Xu and Prince, 1998) 

has been implemented using parameter μ=0.2 and run in 1.000 iterations. The calculation 

of the GVF is based on the edge map deriving from intensities in a slice; individual steps of 

this procedure are shown in Figure 7. 

 

Figure 7. Active contours algorithm and the Gradient Vector Flow map.  

Presented is an example original liver slice (A) with its edge map (B) and overlaid with a 

calculated Gradient Vector Flow (GVF) map (C). 

 

The energy contributions to the total voxel energy are, based on our experience with 

optimizing algorithms using real case data, balanced using the coefficients 1, 3, 9, 3 for 

curve elasticity, curve curvature, GVF magnitude, GVF direction, respectively. All the 

energy contributions are normalized to reside within the range (0,1) in order for the energy 

coefficients to be properly balanced. In our segmentation algorithm, the curve elasticity 
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energy contribution is calculated based on Equation 3, while the curve curvature energy 

contribution is calculated based on Equation 4. The implemented GVF algorithm already 

ensures normalized energy results; the GVF magnitude energy contribution is calculated as 

the magnitude of the GVF vector in the evaluated voxel, while the GVF direction energy 

contribution is defined as representing low energy (0) in the neighboring voxel that is 

located in the direction the GVF vector of the evaluated voxel is pointing to, while all the 

other voxels have a high energy (1). In Equations 3 and 4, E denotes the energy 

contribution, while PCURR, PPREV and PNEXT denote the current, the previous and the next 

points of the active contour, respectively. 

  
2

),,( NEXTCURRPREVCURR
ELAST

PPPP
E


  (Eq.3) 

 NEXTCURRPREVCURRCURV PPPPE ,,   (Eq.4) 

After the total energy on and around each active contour point is calculated, and balanced 

using energy contribution coefficients, the active contour points iteratively move toward 

the voxel with the lowest total energy. Since the energy depends on the active contour 

points’ locations, the curve elasticity and curve curvature contributions are recalculated after 

every iteration, and the total energy is recalculated as well. The active contour movement is 

stopped after a predefined number of iterations (e.g. in our case, the active contour 

movement is limited to 100 iterations). 

When the active contour movement is stopped on one slice, the procedure is repeated on 

another slice. The procedure is started from the referential slice and is repeated on the next 

slices until the end of the slices collection; then, the procedure is restarted from the 

referential slice to the beginning of the slices collection; therefore, the active contour 

segmentation algorithm may be split into two processing threads.  

In order to perform segmentation using the active contours algorithm in three dimensions, 

the initial contour on the current slice is the same as the final active contour on the previous 

slice. Because the difference in liver shape and size between two neighboring slices is 

expected to be minimal on the slices where the organ that is subject to segmentation is 
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present, the previous slice’s final active contour is a good initial contour for the current 

slice. Moreover, due to the expected minimal active contour movement, less iterations are 

required when calculating the image’s GVF since edges will attract active contours in their 

vicinity even when the GVF is calculated in less iterations; therefore, the processing time of 

the active contour segmentation algorithm is reduced (e.g. in our case, we are calculating 

the GVF in 1000 iterations). 

2.1.7. Postprocessing 

After segmentation, a postprocessing algorithm needs to be executed to eliminate possible 

anomalies that may occur during segmentation (e.g. segment leakage).  Postprocessing 

eliminates redundant segments that cannot be part of the final results; elimination is based 

on comparing neighboring slices in the direction of the third dimension (i.e. component Z) 

using normalized cross-correlation.  

The postprocessing algorithm is initiated on the referential slice; namely, the probability 

that a slice includes only one identified segment is the highest on the referential slice, since 

segmentation was initiated on this slice regardless of the chosen segmentation algorithm: 

for region growing, the seed was placed on this slice; for adaptive threshold, the comparison 

with presets was made on this slice and also, the active contour was initiated using the 

adaptive threshold segmentation algorithm on the referential slice as well. Shall the 

morphological operations during segmentation split the segment on the referential slice into 

multiple segments, the first step of postprocessing eliminates such redundant segments by 

only keeping the largest segment on the referential slice.  

Then, the postprocessed referential slice, i.e. ZCURR=ZREF, is used as the basis for performing 

normalized cross-correlation with the next, i.e. ZCURR+1 or the previous, i.e. ZCURR-1 slice, 

respectively. The template for the normalized cross-correlation is generated by intersecting 

each segment on the current slice, i.e. ZCURR, with the finally postprocessed previous, i.e. 

ZCURR-1 or next, i.e. ZCURR+1 slice, respectively (depending on the postprocessing Z-

direction). Then, each segment on the current slice is compared to its corresponding 

template generated from its neighboring slice using normalized cross-correlation; if the 
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result of the comparison exceeds a predefined threshold, the segment is kept on the slice, 

else it is discarded. In our case, we set the comparison threshold to 0.65 which was found 

empirically on real case data. The postprocessing procedure may be split into two 

processing threads, since it is symmetrically executed from Z=ZREF+1 to Z=ZMAX, and from 

Z=ZREF-1 to Z=1 (i.e. the postprocessing Z-direction). 

Moreover, if we compared the neighboring slices only by using the whole next or previous 

slice as the template for comparison to the current slice (i.e. without comparing separate 

segments on a slice), we would be unable to extract these separate segments and determine 

whether they derive from the target tissue (e.g. liver) or not; therefore, such comparison 

enables us to keep multiple segments on a slice with the possibility of eliminating segments 

that are not part of the target tissue. Besides, in order to allow separation of single segments 

that are in fact multiple segments connected by a thin bond (possibly due to leakage), all 

the slices are eroded before and dilated after the postprocessing procedure using a disk 

structuring element of 3x3 pixel size. 

2.2. Validation 

2.2.1. Optimization using Radiologist Data Set as a Training Set  

Since segmentation algorithms are required to produce not only meaningful but also 

accurate results, validation of the algorithms is an imperative. In our case, validation was 

performed as a two-step procedure. In the first step, the algorithms were optimized using 

radiologist dataset as a training set, and then in the second step, the algorithms were 

validated after being optimized using another radiologist dataset. 

In order to perform segmentation algorithms’ optimization, seven sets of patient’s liver 

manually segmented by a radiologist were used as a training set. For each segmentation 

algorithm, changeable parameters that significantly influence the functioning of the 

algorithms were defined, and their possible value ranges were defined based on our previous 

experience using real-case data. These changeable parameters were then subject to variation 

within optimization iterations; every of the seven cases that were already manually 

segmented by the radiologist was re-segmented using our three segmentation algorithms 
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(i.e. region growing, adaptive threshold, and active contours) in the optimization process. 

During this optimization process, variation of the defined changeable parameters was 

performed in order to each time automatically obtain a liver object that is most similar to 

the one segmented by the radiologist. Figure 8 demonstrates how manual segmentation was 

performed by the radiologist: an example slice during manual segmentation can be seen 

(Figure 8A), and a final three-dimensional liver object as a result of the manual 

segmentation by the radiologist (Figure 8B).   

 

Figure 8. Radiologist manual segmentation procedure. 

Presented is a defined liver segment on a slice (A) and a final three-dimensional liver object (B). 

After acquiring the data obtained from the radiologist and arranging them into the form 

that was applicable to optimization and validation (i.e. changing the data syntax by 

converting them to a raw format, so that inclusion into optimization algorithms was 

seamless), value ranges of the changeable parameters were defined. For region growing, the 

parameters subject to variation during optimization were the size of the noise-elimination 

filter mask during preprocessing, and the threshold deviation value which determines the 

range of the intensities that are acceptable for inclusion into the target region during 

segmentation (for optimization purposes, the initial seed of the region growing algorithm 
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was chosen manually and fixed for each segmented case separately). For adaptive threshold, 

the parameters subject to variation during optimization were the size of the noise-

elimination filter mask during preprocessing, and the initial coefficient that determines the 

targeted size of the referential segment (i.e. the initial liver segment on the referential slice) 

in the beginning of segmentation. For active contours, all four energy-contribution 

coefficients were varied during optimization. 

Optimization was run on a workstation with Intel Core-i7 965 Extreme Edition processor 

(maximum frequency 3.46 GHz, 4 cores, 8 threads) with 12 GB of DDR3 memory 

(frequency 1.333 MHz), two 300 GB hard disk drives (velocity 10.000 rpm) running in 

stripe mode, and operating system Windows 7 Enterprise (64-bit). The segmented three-

dimensional liver object that was produced in each iteration of optimization was compared 

to the corresponding model that was manually segmented by the radiologist; comparison 

was done on a slice-by-slice basis using normalized cross-correlation.  Similarity (i.e. the 

results of the normalized cross-correlation) was stored together with the current values of 

the changeable parameters, and finally the iteration with the maximum similarity (i.e. the 

mean value of similarity of all slices), was chosen as the optimum (i.e. case-specific 

similarity, SC in Table 1); the changeable parameters used in that iteration were marked as 

optimal parameters for the current case and currently evaluated segmentation algorithm. 

Moreover, optimal parameters of every evaluated segmentation algorithm were also 

determined for the whole evaluated series (i.e. all the seven cases) by comparing similarity 

of different cases with the same changeable parameters to the corresponding model that was 

manually segmented by the radiologist. These optimized parameters can be defined as 

globally-optimized parameters since their similarity (SG in Table 1) to the training set was 

evaluated globally (i.e. for all the cases, and not using separate parameters for each case) and 

is, therefore, estimated that these globally-optimized parameters are optimal for every 

possible liver that needs to be segmented using our algorithms. 

2.2.2. Final validation   

After globally optimizing changeable parameters of all three evaluated segmentation 

algorithms, final validation was performed on additional four cases that were manually 
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segmented by the radiologist. As opposed to the optimization procedure, the changeable 

parameters were fixed during validation using values obtained from optimization and 

previously defined as globally-optimized parameters. Then, segmentation was performed 

and results were compared (i.e. validation similarity, SMN and SMD in Table 2) to the 

reference model that was manually segmented by the radiologist in the same manner as 

when performing optimization. 

3. Results  

The results of optimization, displayed as similarity to the training set, are shown in Table 1. 

Both the similarity using case-specific optimal parameters (SC in Table 1) and using 

globally-optimized parameters (SG in Table 1) are presented. The similarity was evaluated 

using two possible criteria: as the mean (Table 1A) or the median similarity (Table 1B) of 

all the slices within a case of the training set.  

Table 1A. Optimization results of seven cases compared to radiologist data by mean 

values. 

Presented are mean similarities of seven cases segmented using three segmentation algorithms and 

compared to models that were generated by radiologist manual segmentation. Every similarity 

(S) is the mean value of similarities from each slice of a case, and was evaluated using 

individual, case-specific parameters (SC) or using globally-optimized parameters (SG). Std stands 

for standard deviation of similarities of slices within a case. 

case 
number 

REGION GROWING ADAPTIVE THRESHOLD ACTIVE CONTOURS 

SC std(SC) SG std(SG) SC std(SC) SG std(SG) SC std(SC) SG std(SG)

2009122 91.2 15.9 61.1 38.9 72.2 39.1 72.2 39.1 88.2 22.1 68.8 36.3

2010093 92.7 13.7 86.8 19.0 70.1 38.1 68.1 40.2 89.7 20.7 64.5 40.1

2010122 84.7 19.6 79.9 19.2 73.4 34.5 70.1 33.9 84.6 22.3 78.6 23.6

2011022 81.1 25.5 65.7 36.0 74.0 29.1 73.2 29.5 79.4 29.1 67.2 37.1

2011042 86.6 19.4 78.2 29.0 60.0 35.6 40.1 41.6 64.8 36.6 54.8 37.9

2011062 94.4 2.1% 94.2 2.9% 80.2 13.4 80.2 13.4 87.6 14.1 67.9 36.6

2011070 92.5 4.9% 92.5 4.9% 69.3 37.8 69.3 37.8 80.3 30.9 80.3 30.9

 

mean 

  79.8

% 

12.7

% 

  67.6

% 

12.8

% 

  68.8

% 

8.6% 
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Table 1B. Optimization results of seven cases compared to radiologist data by median 

values. 

Presented are median similarities of seven cases segmented using three segmentation algorithms 

and compared to models that were generated by radiologist manual segmentation. Every 

similarity (S) is the median value of similarities from each slice of a case, and was evaluated 

using individual, case-specific parameters (SC) or using globally-optimized parameters (SG).  

 

case 

number 

REGION 

GROWING 

ADAPTIVE 

THRESHOLD 

ACTIVE 

CONTOURS 

SC SG SC SG SC SG 

20091223 95.6% 79.9% 92.0% 92.0% 94.0% 82.6% 

20100930 95.9% 91.8% 88.8% 90.0% 95.3% 82.5% 

20101221 90.3% 85.6% 88.6% 87.8% 91.0% 86.9% 

20110228 88.8% 84.8% 83.7% 83.7% 88.3% 86.4% 

20110421 92.6% 89.2% 73.6% 55.4% 80.2% 75.6% 

20110624 94.4% 94.4% 82.7% 82.7% 91.2% 88.9% 

20110707 93.4% 93.4% 87.6% 87.6% 91.5% 91.5% 

 

median 

 89.2%  87.6%  86.4% 

 

As presented in Table 1A, after being globally optimized (i.e. for all cases) our 

implementation of region growing algorithm provides mean slice similarities (SG in Table 

1A) from 61.1% to 94.2% with the mean value of 79.8% (standard deviation 12.7%) 

which classifies the region growing as the most accurate algorithm evaluated based on the 

mean and also the median values of all the slices’ similarities. Based on the data from Table 

1B, median slice similarity values for the region growing algorithm vary from 84.8% to 

94.4% with the median value of 89.2%, which is the highest among all three evaluated 

algorithms. 

Our implementation of adaptive threshold algorithm provides globally optimized (i.e. for 

all cases) mean slice similarities (SG in Table 1A) from 40.1% to 80.2% with the mean 

value of 67.6% (standard deviation 12.8%) which classifies the adaptive threshold 

algorithm as the least accurate algorithm evaluated based on the mean values of all the 
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slices’ similarities. Based on the data from Table 1B, median slice similarity values for the 

adaptive threshold algorithm vary from 55.4% to 92.0% with the median value of 87.6%. 

Our implementation of active contours algorithm provides globally optimized (i.e. for all 

cases) mean slice similarities (SG in Table 1A) from 54.8% to 80.3% with the mean value of 

68.8% (standard deviation 8.6%). Based on the data from Table 1B, median slice similarity 

values for the active contours algorithm vary from 75.6% to 91.5% with the median value 

of 86.4%. 

The results of validation of the four additional cases manually segmented by the radiologist 

are shown in Table 2. The similarities are non-optimized: the segmentation results (SV in 

Table 2) are validated using globally-optimized parameters (SG in Table 1) without further 

modifications of these parameters in order to show functioning of our segmentation 

algorithms on models which previously were not used as a training set during the 

optimization procedure. 

Table 2. Validation results of four cases compared to radiologist data by mean and 

median values. 

Presented are validation results: mean and median similarities of four cases compared to 

manually-segmented data from the radiologist. Similarity (S) was evaluated on a slice-by-slice 

basis using validation-only parameters as mean (SMN) or median (SMD) of all the slices in a case. 

Std is the standard deviation of mean similarities of slices within a case. 

case 
number 

REGION GROWING ADAPTIVE THRESHOLD ACTIVE CONTOURS 

SMN std(SMN) SMD SMN std(SMN) SMD SMN std(SMN) SMD 

V1 79.4% 24.8% 87.0% 67.3% 30.5% 76.4% 54.5% 43.0% 79.5% 

V2 87.1% 18.0% 92.5% 64.5% 35.9% 79.0% 51.7% 42.6% 70.2% 

V3 71.3% 33.1% 85.5% 67.5% 30.1% 78.0% 72.8% 28.5% 81.9% 

V4 49.6% 38.1% 70.5% 65.9% 35.7% 81.9% 58.2% 43.6% 83.7% 

 71.9% 16.2% 86.3% 66.3% 1.4% 78.5% 59.3% 9.4% 80.7% 

 

As presented in Table 2, the region growing algorithm achieves highest similarities (mean 

71.9% with standard deviation 16.2%, or median 86.3%) of the validated models. The 
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standard deviation between different models segmented using the same algorithm is the 

smallest (i.e. 1.4%) using the adaptive threshold algorithm. Individual validation 

similarities (SV in Table 2) on a slice basis are also presented in Figure 9. 

 

Figure 9. Final validation similarities of four cases (A, B, C, and D). 

The similarities presented are on a slice-by-slice basis, i.e. the abscissa represents the location of a 

slice, while the value of the graphs is the similarity of the slice with the manually validated slice. 
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Figure 9 shows that although the four validation cases (A, B, C, and D) were not included 

in the training set, they could be segmented using our implementations of the region 

growing, adaptive threshold and active contours algorithms.  

 

4. Discussion  

The aim of this paper was to present three possible automatic liver segmentation algorithms 

and perform their evaluation by optimizing their functioning for an accurate liver 

segmentation; the optimization was based on seven-patients dataset segmented by the 

radiologist and used as a training set, while validation was performed using additional 

radiologist dataset consisting of four additional patients. As presented in the Results 

section, developing an automatic segmentation algorithm that generates accurate three-

dimensional liver models is demanding, especially because of the variability of input data 

(i.e. liver in the patient’s medical images). Nevertheless, because the region growing 

requires the end-user to place an initial seed (i.e. to click on the liver on one image), this 

segmentation algorithm cannot be classified as a fully-automatic algorithm but rather semi-

automatic; however, an algorithm for automatically placing the initial seed could upgrade 

the region growing algorithm to a fully-automatic algorithm. The initial seed-placing 

algorithm can be developed based on the adaptive threshold segmentation algorithm 

(described in 2.1.5.) on the referential slice, with an additional task of selecting a pixel with 

a median intensity of the segment on the referential slice which should ensure avoidance to 

selecting vessels or nodules as the target region. 

The liver includes or may include various inner structures (e.g. blood vessels, metastases, 

hemangioma, etc.) that do not have a predictable intensity range or texture; these structures 

may directly interfere with segmentation algorithms by possibly influencing the generation 

of segments. Also, certain organs near the liver (i.e. the spleen, the heart, the kidneys) have 

similar intensity ranges to the liver (Massoptier and Casciaro, 2008), which results in 

segmentation leakage for threshold-based segmentation methods (i.e. region growing and 

adaptive threshold). Moreover, active contours are attracted to edges, including the edges of 

the inner structures; therefore, straight-forward three-dimensional segmentation of the liver 
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using active contours would only be possible if the three-dimensional contour (i.e. the 

deformable surface) was initialized entirely near the edge of the liver. Besides, the soft 

transitions of the organs from one slice to another often prevent detection of the organ 

edges, which leads to an insufficient Gradient Vector Flow (GVF) map and consequently 

corrupting the generated segments of the active contours algorithm. All the identified 

difficulties demonstrate that accurate automatic liver segmentation is indeed a challenging 

task. Fortunately, highest accuracy of liver segmentation is not required for electroporation-

based treatment planning since tissue of interest for electric field distribution actually 

represents the tumor tissue, and possibly large blood vessels which must be taken into 

account because of electric field calculations and electrode placement. The liver tissue, 

however, is only a medium that surrounds the tissue of interest, i.e. the tumor that resides 

in the liver, since electroporation-based treatment planning is required for tumor nodules 

that are inside or on the edge of the liver. Therefore, the main function of the generated 

three-dimensional liver model besides being the medium surrounding the tissue of interest 

is to provide instructions to the attending physician on how the electroporation-based 

treatment will be performed (i.e. where the tumor is located, since it cannot be seen as it is 

deep-seated), and serves as electrode-insertion approximate offline navigation for the 

clinician.  

Since similarity comparisons using normalized cross-correlation were performed on each 

slice of a case separately, final results of each case are presented using two representations: 

the mean similarity of all the slices, and the median similarity of all the slices in a case. Two 

representations of the data were presented since there are many individual slices with a 

similarity of 0%, which means whether the radiologist marked a segment on that slice and 

the segmentation algorithm missegmented it, or vice-versa (i.e. the segmentation algorithm 

detected a segment that the radiologist did not identify). Hence, such slices significantly 

contribute to the final results of the comparison regardless of the size of the segment that 

caused the 0% similarity on the slice (i.e. even a segment of only few pixels detected by the 

segmentation algorithms and not identified by the radiologist would produce a 0% 

similarity of its slice). Since such slices significantly impact the quality of the final results, 

the mean similarity of all the slices in a case does not reflect success of the segmentation 
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algorithm enough. Therefore, the median similarity of the slices in a case was presented as 

well.  

Optimization results presented in Table 1 show that using case-specific optimization 

parameters (i.e. parameters optimized for every case separately, SC in Table 1), very good 

similarities to the training set can be obtained (median similarities of up to 95.9% using 

region growing, up to 80.2% using adaptive threshold, and up to 80.3% using active 

contours). However, results applying to case-specific parameters can only be achieved if a 

reference model which is part of the training set is available. Therefore, globally-optimized 

parameters are the parameters that give meaningful information on how accurate a 

segmentation algorithm is. Our implementation of region growing algorithm could be 

optimized to achieve an 89.2% median similarity (79.8% mean similarity with 12.7% 

standard deviation) to the training set, which classifies this algorithm as the most 

optimization-prone algorithm evaluated. The adaptive threshold algorithm could be 

optimized to achieve an 87.6% median similarity (67.6% mean similarity with 12.8% 

standard deviation), and our implementation of the active contours algorithm an 86.4% 

median similarity (68.8% mean similarity with 8.6% standard deviation), which shows that 

despite being more sophisticated, these two algorithms achieved lower results than region 

growing. The main reason is that region growing algorithm can be effectively optimized 

since the optimizable threshold-deviation parameter majorly influences segmentation (i.e. it 

significantly influences which voxels will be part of the final tissue segment). The adaptive 

threshold only has one most relevant parameter that could be optimized (i.e. the initial 

coefficient that determines the targeted size of the initial segment on the referential slice), 

which does not influence segmentation on further slices. Although the active contours 

algorithm includes four optimizable parameters (i.e. the four coefficients that balance 

energy contributions), it is almost impossible to influence the movement of the active 

contour (i.e. the snake). Namely, even if the four energy contributions are ideally balanced, 

the active contour movement needs to mostly rely on the edges in the image (i.e. the two 

coefficients representing GVF magnitude and directions). Therefore, if the edges of the 

target tissue were improperly detected after preprocessing (e.g. the target tissue does not 
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have clearly detectable edges), the movement of the active contour will produce unwanted 

results. 

Results of the final validation that are presented in Table 2 show that new patient images 

that were not part of the optimization training set can be segmented using our 

implementations of segmentation algorithms (region growing, adaptive threshold, and 

active contours). The best results are provided by the region growing algorithm (median 

similarity 86.3%, mean similarity 71.9% with standard deviation 16.2%), while adaptive 

threshold (median similarity 78.5%, mean similarity 66.3% with standard deviation 1.4%) 

and active contours (median similarity 80.7%, mean similarity 59.3% with standard 

deviation 9.4%) provide lower similarity values. As it can be seen in Figure 9, there were 

many slices missegmented in all four cases. Most missegmented slices were produced using 

the active contours algorithm, while the least standard deviation is provided using the 

adaptive threshold algorithm. Although such missegmented slices would negatively 

influence not only generation of the liver model, but also detection of the tumors, this 

drawback is avoided using manual validation by the attending physician, which is discussed 

in the following paragraph. Finally, although the region growing was expected to be the 

least sophisticated and accurate algorithm, it proved to be the most robust of all the 

evaluated algorithms, providing highest accuracy and least missegmented slices. 

Tumor detection from the patient’s medical images is currently still in development and 

will be implemented as a semi-automatic procedure: identification of structures within the 

segmented liver (including its edge area) will be done automatically, but finally the end-user 

(i.e. the attending physician) will be required to manually determine which identified 

structures are tumors and are, therefore, subject to electroporation-based treatment. 

Therefore, the whole liver needs to be properly segmented, since tumors are detected as 

structures within or on the edge of the liver, and could be missed if some slices at the top or 

at the bottom of the liver are not segmented. Figure 10 demonstrates possible situations 

that are related to missegmenting liver segments at the beginning or at the end of the liver: 

Figure 10A shows an ideal case where all the slices are segmented with a high similarity to 

the radiologist data; in Figure 10B, there are three slices that do not include liver segments 
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but should include them (similarity of these slices is zero); Figure 10C shows a bad case 

where many slices that should include liver segments do not include them. The main 

reason for missing segments on such slices is intensity inhomogeneity in the Z direction 

(i.e. not on a single slice but through slices); although the latter is actually corrected when 

preprocessing the images applying the sigmoid transformation using Volume of Interest 

(VOI) parameters from the DICOM header, the anomaly is not completely removed, 

especially in the beginning and in the end of the series. Since this phenomenon cannot 

therefore be fully avoided, and because there are rare cases that can be automatically 

segmented as the case from Fig 10A, manual validation of the segmented slices is required 

at the end of electroporation-based treatment planning procedure. The validation can be 

combined with the attending physician’s manual identification of the structures whether 

they are tumors or healthy tissue, which reduces the time needed to execute the whole 

treatment planning procedure. Hence, the attending physician manually validates the 

segmented images to ensure proper liver and tumor model generation, and manually 

corrects them if required. 

 

Figure 10. Possible miss situations when segmenting the liver. 

Presented are the situations where all the slices are segmented (A), three slices have been 

missegmented (B) or many slices have been missegmented (C).   
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Currently, only Magnetic Resonance Imaging (MRI) images are segmented for 

electroporation-based treatment planning, as MRI is preferred in clinical practice for the 

liver. Namely, MRI is a non-invasive procedure (i.e. there is no ionizing radiation present 

during MRI) and using a contrast medium it can provide satisfactory images of the liver for 

electroporation-based treatment planning. Hence, our algorithms are currently written and 

optimized only for MRI images; the preprocessing procedures are prepared for expected 

intensity ranges and Volume-of-Interest (VOI) values that derive from MRI sources, and 

could therefore not perform segmentation of e.g. Computed Tomography (CT) images. 

However, since the modality of obtained images can be easily determined from the header 

of the DICOM files, and because only minor modifications of the preprocessing algorithms 

would be required, a modification allowing non-MRI image segmentation would not be 

demanding to implement. 

Further steps of our research in the field of electroporation-based treatment planning 

include improved algorithms for tumor detection and, also, automatic vessel segmentation. 

Namely, segmentation of tumors and vessels needs to be also developed since algorithms for 

liver segmentation (i.e. region growing, adaptive threshold, and active contours) cannot be 

used for this purpose without thorough modifications of the algorithms. We expect to 

develop vessel segmentation algorithms as a combination of intensity- and morphology-

based methods with the aim of extracting line-like structures from the liver.  

We plan to develop electroporation-based treatment planning as a web application that will 

be remotely accessible from a web browser and will allow generating treatment plans by 

allowing the attending physician to upload the DICOM images of the patient and, after 

calculations and manual validation of the results, obtaining a directly applicable treatment 

plan. Hence, besides the automatic liver segmentation, the treatment planning software will 

also need to include electrode insertion and calculation of the electric field distribution with 

electrode position optimization in order for the treatment plan to comprise all the required 

information. The treatment planning procedure will be simplified in order to minimize the 

input of the clinician: because the segmentation of the tissue is automatic, the clinician will 

only need to validate the segmentation results (and if required, correct the segmentation by 
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dragging the produced contours towards desired positions on each slice) and, finally, 

determine the entry direction of the electrodes. Namely, the electrodes will be 

automatically inserted towards the gravitational center of the tumor (or tumors), and the 

required number of electrodes will be proposed by the software based on the shape and size 

of the tumor (or tumors). Therefore, the clinician will only need to rotate the electrode 

array towards the excepted intraoperative entry direction, which will simplify the 

procedure. 

Finally, since automatic liver segmentation can be implemented for other applications 

(Conversano et al., 2011; Crocetti et al., 2008; Massoptier and Casciaro, 2008) beside 

electroporation-based treatments, we opt towards extending the functioning of our web-

based treatment planning software for electroporation-based treatments onto related fields 

of surgical liver intervention planning. 
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Abstract 
 

Electroporation-based treatment combining high voltage electric pulses and poorly 

permanent cytotoxic drugs, i.e. electrochemotherapy (ECT), is currently used for treating 

superficial tumor nodules by following standard operating procedures. Besides ECT, 

another electroporation-based treatment termed non-thermal irreversible electroporation 

(N-TIRE) is also efficient in treating deep-seated tumors. To perform ECT or N-TIRE of 

deep-seated tumors, following standard operating procedures is not sufficient and patient-

specific treatment planning is required for a successful treatment. Treatment planning is 

required because of the use of individual long needle electrodes and due to diverse shape, 

size and location of deep-seated tumors. Many institutions that already perform ECT of 

superficial metastases could benefit from treatment planning software that would enable the 

preparation of patient-specific treatment plans. To this end, we have developed a web-based 

treatment planning software for planning electroporation-based treatments that does not 

require prior engineering knowledge from the user (e.g. the clinician). The software 

includes algorithms for automatic tissue segmentation and, after segmentation the 

generation of the 3D model of the tissue. The procedure allows the user to define how the 

electrodes will be inserted. Finally, electric field distribution is computed and position of 

electrodes and voltage to be applied are optimized using the 3D model, and a downloadable 

treatment plan is made available to the user. 
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1. Introduction 

Electroporation is the phenomenon that occurs when a cell is exposed to a sufficiently high 

external electric field (Kotnik et al. 2012). During and after exposure, the plasma 

membrane is transiently permeabilized, thus allowing the material from outside to enter the 

cell, which would be otherwise impeded (Kotnik et al. 1997). The phenomenon is 

considered to be a universal method and platform technology because all types of cells 

(animal, plant, and microorganisms) are affected by electroporation (Miklavcic 2012). In 

fact, many electroporation-based applications have already been identified and developed, 

such as electrochemotherapy of tumors (Serša and Miklavčič 2008), non-thermal 

irreversible ablation of tumors (Garcia et al. 2011; Maor et al. 2009), gene therapy (Heller 

and Heller 2010), food preservation (Toepfl et al. 2007), and others (Daugimont et al. 

2010; Gusbeth et al. 2009; Ušaj et al. 2010).  

 

Electrochemotherapy (ECT), which is currently most developed electroporation-based 

therapy (Mali et al. 2013; Sersa et al. 2008), improves chemotherapy outcome by 

increasing the plasma membrane permeability to cytotoxic drugs with exposure of target 

cells (i.e. tumor) to a high-strength electric field (Serša and Miklavčič 2008) The electric 

field is caused by high-voltage electric pulses that are delivered to the target tissue (i.e. 

tumor) using electrodes (Mir et al. 1991). ECT is already used in clinical practice for 

treating metastases of skin melanoma in more than 100 clinical institutions in Europe 

(Miklavčič et al. 2012), and has already been introduced to clinical trials for treating deep-

seated metastases in liver (Edhemovic et al. 2011), brain (Agerholm-Larsen et al. 2011; 

Linnert et al. 2012; Mahmood and Gehl 2011), bone (Fini et al. 2011), and soft tissue 

(Neal, II et al. 2011). While following standard operating procedures (Mir et al. 2006) 

ensures safe and successful treatment of skin melanoma metastases (Marty et al. 2006), 

patient-specific treatment planning is nevertheless required for ECT of deep-seated tumors 

(Pavliha et al. 2012). Namely, deep-seated tumors are very diverse in shape, size and 

location in the body, and because of the use of long needle electrodes for treating such 

tumors, coverage of the whole target tissue (i.e. tumor) with a sufficiently high electric field 

(which is a prerequisite for successful ECT) (Miklavcic et al. 2006; Miklavcic et al. 1998) 
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can currently only be assured by means of numerical modeling of electric field distribution 

based on representative input data is performed and image guided insertion of electrodes is 

used (Kos et al. 2010; Miklavcic et al. 2010).  

 

Similarly to ECT, Non-Thermal Irreversible Electroporation (N-TIRE) is another 

electroporation-based application that is used for ablation of pathological tissue (i.e. tumor) 

using electrodes (Davalos and Rubinsky 2008; Garcia et al. 2011; Županič and Miklavčič 

2009). N-TIRE performs tissue ablation using electric field strengths above values used for 

electrochemotherapy and/or with a greater number of electric pulses and, therefore, 

destroys target tissue without the use of chemotherapeutic drug or heat (Davalos and 

Rubinsky 2008). N-TIRE has been in use for treating e.g. brain metastases (Garcia et al. 

2011) or soft-tissue sarcoma (Neal, II et al. 2011) and would also benefit from patient-

specific treatment planning (Golberg and Rubinsky 2012).Although N-TIRE is very 

similar to ECT, it also requires calculations of temperature increase to be included in 

treatment planning procedure (Županič and Miklavčič 2011). 

 

Patient-specific treatment planning of electroporation-based treatments such as ECT and 

N-TIRE is based on medical images of the patient which are used to generate a three-

dimensional model of the target tissue (i.e. tumor) and the organ surrounding the target 

tissue (Pavliha et al. 2012). Then, the three-dimensional model is used for calculation of 

the electric field distribution during the electroporation-based treatment (Zupanic et al. 

2012). Since the standard for medical imaging transfer and storage, i.e. Digital Imaging and 

Communications in Medicine (DICOM) (National Electrical Manufacturers Association 

2009) represents a common format for storage and transfer of medical images, the images 

can be transferred over the internet and, due to the standard format, the receiver will be 

able to display them properly. This facilitates treatment planning by developing treatment 

planning software as a web application, which allows remote generation of treatment plans 

(Olsen et al. 2000). Moreover, the treatment planning software should be as automated as 

possible, since without treatment planning software a clinician (i.e. a medical doctor – 

MD) may otherwise need about six hours to manually perform segmentation of a patient 
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(Paulides et al. 2010).The advance from treating skin metastases to treating deep-seated 

tumors would be facilitated by user-friendly treatment planning software that would allow 

clinicians to prepare patient-specific treatment plans without the need of an engineer or a 

medical physicist or specialized engineering knowledge (Pavliha et al. 2012). In our present 

paper, we describe implementation of treatment planning tool including developed 

methods for image segmentation, model building and determination of electroporation as a 

web-based application for treatment planning of electroporation-based therapies such as 

electrochemotherapy and non-thermal irreversible electroporation. 

 

2. Materials and Methods 

2.1. Web-based Graphical User Interface (GUI) 

The functioning of the web-based treatment planning software for electroporation-based 

treatments is presented in Figure 1.  

 
Figure 1: Flow diagram of web-based treatment planning for electroporation-based 

treatments. 
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The treatment planning procedure consists of the following subprocedures: upload of 

medical images (Figure 1a), selection of series used for planning (Figure 1b), generation of 

3D model (which is done by preprocessing, segmentation, and postprocessing of the images 

– Figure 1c), 3D model validation (Figure 1d), manual correction of segmentation (if 

decided by the user that it is required – Figure 1e), virtual insertion of electrodes into the 

model (Figure 1f), calculation of electric field distribution (with optimization of 

parameters: voltages and electrode positions – Figure 1g), and download of the treatment 

plan (Figure 1h). In case the images have been previously segmented (Figure 1i), steps (c, d, 

and e) are not executed and pregenerated segments are loaded instead. 

In order to develop easy-to-use treatment planning software, user interaction (i.e. the 

number of parameters, events, or actions the user needs to execute or monitor) should be 

minimal (Heymann and Degani 2007). Therefore, the most demanding subprocedures (i.e. 

generation of the 3D model and calculation of the electric field distribution on Figures 1c 

and 1g, respectively) are developed so that they do not require any user interaction. 

Namely, the subprocedures of 3D model generation and electric field distribution 

calculation require engineering knowledge, such as medical image processing (Birkfellner 

2010) and numerical modeling based on the finite element method (FEM) in order to 

perform them. Since users of web-based treatment planning software for electroporation-

based treatments are expected to be clinicians, all subprocedures are presented in a non-

engineering way, so that users are able to generate treatment plans effortlessly. 

First, the user is required to upload the medical images of the patient (Figure 1a) by 

selecting the DICOM files that contain image slices of the body area with the target tissue 

(i.e. one or more metastases). After uploading the medical images, treatment planning 

software automatically examines them by reading metadata of the DICOM files (i.e. the 

DICOM header). Parameters SeriesNumber, SeriesDescription and SliceLocation are read 

from the header and, then, the images are grouped by the series they belong to (i.e. 

SeriesNumber parameter) and labeled using the original series name (i.e. SeriesDescription 

parameter). Within each group, the images are sorted according to their spatial location 

(i.e. according to their Z-index, i.e. SliceLocation parameter). Afterwards, one median image 
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from each group (i.e. each detected series) is presented to the user who, finally, by clicking 

on the corresponding series’ image selects which series will be used for planning the 

electroporation-based treatment (Figure 1b). 

2.2. Automatic segmentation of medical images 

Web-based treatment planning for electroporation-based treatments is based on algorithms 

for automatic segmentation of medical images (Figure 1c). First, the selected series (Figure 

1b) of the uploaded medical images (Figure 1a) is preprocessed; all the images (slices) are 

first transformed using a sigmoid function, described in Equation 1.  

ݐݑ݌ݐݑ݋  ൌ 	 ௢௨௧௣௨௧_௥௔௡௚௘

ଵା	௘షర∙
೔೙೛ೠ೟షೈ಴

ೈೈ

   (Eq.1) 

Parameters Window Center (WC) and Window Width (WW) are part of the Volume-of-

Interest (VOI) metadata located in the DICOM header of each image. The output_range 

parameter defines the maximum value of the preprocessed image. Parameters input and 

output are the source and preprocessed data, respectively. All the parameters’ values are bits. 

After transforming each slice using the transformation from Eq. 1, the slices are de-biased 

using a publicly available inhomogeneity correction algorithm (Zheng et al. 2009). Then, 

each slice is filtered using an average and a Gaussian blur filter (σ= 3), both with window 

sizes of 3x3 pixels. Finally, a fixed-value sigmoid transformation (WC=20000, WW=100, 

output_range=216) is applied to each slice in order to ensure appropriate intensity 

distribution which is necessary for segmentation; fixed values were defined empirically 

using real-case data. 

After preprocessing, image segmentation is performed. Currently, three possible liver 

segmentation methods are implemented: region growing, adaptive threshold, and active 

contours (i.e. snakes) algorithms. Region growing is a semi-automatic algorithm (because it 

requires the user to place an initial seed, i.e. to click on the liver on a single slice) while 

adaptive threshold and active contours are automatic algorithms that generate 3D liver 

models without user interaction. Three liver segmentation algorithms have been 

implemented because different segmentation algorithms provide different results (De 

Pasquale and Stander 2009) and user requirements on how the 3D model is constructed 

may vary. After the liver is segmented, segmentation of tumors and vessels is executed. 
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Algorithms for segmentation of tumors and vessels combine intensity-based and 

morphological characteristics of given objects to identify them in source images. The basis 

of the algorithms is a multi-scale filter, described in (Frangi et al. 1998) which detects local 

second-order structures based on relationship between their eigenvalues. The filter 

distinguishes between linear (or cylindrical in 3D) and round (or spherical in 3D) 

structures, which can be used for detection of vessels and tumors, respectively. Results of 

filtering are two image layers: the first includes enhanced tumors while the other includes 

enhanced vessel structures. After filtering, the resulting enhanced image layers of tumors 

and vessels are thresholded using a method based on maximization of entropy (Kapur et al. 

1985).  

Additionally, region growing is performed in 3D based on thresholding results in order to 

collect neighboring voxels with intensity values within and below the threshold, as these 

voxels are also part of the segmented structure (Beichel et al. 2004). Region growing is 

performed iteratively with lowering of the threshold by factor 0.001 in each step. The 

procedure stops once no new voxels have been added in an iteration step. Segmentation of 

tumors and vessels is performed based on segmentation of the organ that includes them (i.e. 

the liver) since the segmented target organ is used as a mask for tumor and vessel 

segmentation. Therefore, the tumors are detected if they are in or on the boundary of the 

organ. 

 

When the segmentation is finished, the user has to validate the generated 3D model (Figure 

1d): segmented layers with the liver, tumor and vessels are presented and manual correction 

of the generated segments is possible for each slice by dragging the overlaid contours of the 

generated segments to desired positions (Figure 1e). In the final stage, the electrodes are 

inserted into the 3D model (Figure 1f). For each identified tumor, a selection of basic 

electrodes’ configurations is presented to the user. The electrodes are positioned relative to 

the center of gravity of the tumor at appropriate depth (Kos et al. 2010) and are parallel to 

each other. Depending on the planned direction of access, the user can change the direction 

of insertion of the electrode array, number of electrodes, rotation of the outer electrodes 

with respect to the electrodes inserted in the tumors, the distance between electrodes, as 
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well as basic electrode configuration and number of electrodes. When initial positions of all 

electrode arrays are defined, electric field distribution calculation and optimization of 

electrode voltage and position is performed. 

 

2.3. Electric field distribution calculation and optimization 

The electric field distribution is the most important predictor of electroporation (Miklavcic 

et al. 2006; Miklavcic et al. 1998). The electric field distribution can be determined by 

solving the Laplace equation for electric potential (V) in the static case, described in 

Equation 2. 

 

  െ׏ ∙ ሺߪ ∙ ሻܸ׏ ൌ 0    (Eq. 2) 

Comsol Multiphysics (Comsol AB, Stockholm, Sweden) is used with the connection to 

Matlab (Mathworks, Nantick, MA, USA) to automatically build the patient-specific model 

by using the segmented images for setting location-specific electric properties (Aström et al. 

2009), including the electrodes, and solving the electric field distribution. Briefly, the 

automatic process (Figure 1g) proceeds as follows: the conductivity of the region of interest 

is set as a location-based function. The electrodes are then inserted as conductive cylinders 

of appropriate dimensions (Figure 1f) and boundary conditions are set. When electrodes 

are active (i.e. potential is present on them) they are considered as fixed potential, while the 

non-active electrodes are left floating with an undefined potential. The simulations are run 

with a sequential algorithm for increasing conductivities during pulse application (Pavselj et 

al. 2005; Sel et al. 2005). The electric field and current density are extracted in the next 

step and the simulations are repeated for all the electrode pairs. The postprocessing of the 

computed electric fields and currents is handled by Matlab using built-in Comsol functions 

for extracting the electric fields and integrating the current density. The Matlab-Comsol 

integration provides easy coupling with optimization algorithms, which have access to the 

output of the models, as well as the ability to subsequently modify electrode positions and 

applied voltages (Zupanic et al. 2012; Županič et al. 2008). Finally, the results of treatment 

planning can be downloaded as a Portable Document Format (PDF) file (Figure 1h). 
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3. Results and Discussion 

Treatment planning software for electroporation-based treatments is developed as a web 

application. The front-end uses Hyper-Text Markup Language 5 (HTML5) and JavaScript 

(JS) for content generation and user interaction, while the back-end is a Matlab 

(Mathworks, Nantick, MA, USA) application invoked by the front-end using Asynchronous 

JS and XML (AJAX) and PHP Hyper-Text Preprocessor (The PHP Group, 2001-2012). 

Three-dimensional visualization is performed using X Toolkit (XTK, The X Toolkit 

Developers, 2012) which is a Web Graphics Library (WebGL) based toolkit for scientific 

visualization. The graphical user interface (GUI) of the treatment planning software for 

electroporation-based treatments is presented in Figure 2, where three example screens are 

shown: the initial screen (Figure 2a), the interface for series selection (Figure 2b, procedure 

from Figure 1b), and an example generated 3D model of the liver with vessels and an 

identified tumor (Figure 2c). 

 
Figure 2: Graphical User Interface (GUI) of the web-based treatment planning 

software for electroporation-based treatments. Presented are three example screens: 

initial screen (A), interface for series selection (B), and an example generated 3D 

model of liver with a tumor and major vessels (C). 
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While the GUI is rendered at the client-side (i.e. in the user’s web browser), all the 

processing that involves 3D model generation (Figure 1c) and electric field distribution 

calculations (Figure 1f) is executed on the treatment planning server and, therefore, the 

user’s computer is not loaded by the functioning of the treatment planning software.  

 

 

Figure 3: Example of generated treatment plan, showing electroporation cross section 

overlaid with the original patient image (A), cumulative coverage curves showing the 

volume fraction of tumor treated above a certain electric field (B) and electrode pair 

contributions indicating contribution of each individual electrode pair (C). 

 

In this paper, we presented the possibility of generating treatment plans for electroporation-

based treatments remotely (Olsen et al. 2000), i.e. using web-based treatment planning 

software, and without prior engineering knowledge or help of an engineer. The software is 

based on algorithms for automatic segmentation; currently, three different algorithms for 

liver segmentation are implemented. Because the software is developed as modular, future 

inclusion of additional segmentation modules is possible with instantaneous deployment. 

Namely, the developed software provides a modular framework that allows inclusion of 
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additional segmentation algorithms; therefore, modules for segmentation of other tissue 

(e.g. bone, soft-tissue sarcoma, etc.) may be additionally included in the web application. 

Computation of electric fields in additional tissues is also possible, since segmented images 

are used as postprocessing and electric property masks in the simulation step. The only 

possible limitation is the availability of data on electrical properties of tissues and data on 

changes of electric conductivity during pulse application which however can be obtained 

through iterative procedure (i.e. modeling and measurements) or by inverse analysis 

(Čorović et al. 2013). 

The presented software allows loading cases that were previously segmented (Figure 1i) 

which is important for historical evaluation of patients that were already treated. The 

possibility of loading presegmented cases brings two major benefits: 1. the clinicians can 

perform historical evaluation of cases that were previously treated with ECT or N-TIRE 

and evaluate if there is correlation between the calculated coverage of the tumor with the 

electric field, and 2. the software is able to perform calculations of the electroporation-based 

treatment regardless of the tissue/organ that is subject to treatment provided that 

segmentation data is available. If the segmentation is performed by radiologists, the 

presented treatment planning software allows calculations and optimization of the electric 

field distribution in the segmented tissue/organ. In Figure 4, an example of model 

geometry representing the prostate is shown. The model was previously segmented by a 

radiologist; then, segments were imported into the treatment planning software and, 

finally, a treatment plan for N-TIRE was calculated. 
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Figure 4: Excerpt from a prepared treatment plan for N-TIRE of prostate cancer. A) 

Electrode pair contribution, b) model with three needle electrodes, c) cumulative 

coverage curves showing that the whole tumor is covered with fields in excess of 700 

V/cm and over 95 % of tumor is covered with fields in excess of 800 V/cm, d) 

voltages used in the proposed treatment plan 

 

Algorithms for segmentation of tumor and vessel structures need to be robust, especially 

with respect to different imaging modalities of source images. Based on our experience with 

real case data, MRI images may include representations of tumors and vessels with very 

similar intensities. Therefore, intensity-based segmentation methods such as thresholding 

cannot successfully separate tumors from vessels in MRI images. This hinder can be 

overcome by incorporating structural information into the segmentation algorithm: by 

observing the structures in three dimensions through all slices, it is possible to separate 

blob-like structures which might be tumors from line structures which are typical for 

vessels. After the execution of the segmentation algorithm which detects blobs, an 

additional step is required to define whether the identified structures are tumors or healthy 

tissue. Such verification is performed in the validation step (Figure 1d), where 

segmentation of all the tissues is manually validated by the user who has the possibility of 
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accepting the segmentation results or correcting them manually (i.e. each slice) before 

continuing with virtual electrode insertion. 

Finally, the results of treatment planning that are produced by electric field distribution 

optimization need to be presented in understandable and human-readable form. We have 

previously developed several novel visualization methods, allowing the visualization of the 

contribution of each electrode pair towards the total treatment and the visualization of 

coverage of tissues above a certain electric field (as well as visualization of predicted 

electroporation) overlaid on the original medical images. In the future, the treatment plan 

can be transferred directly to electroporation devices (e.g. electroporators or devices for 

robots-assisted surgery), which will facilitate electroporation-based treatments even more. 

Optimization of the electric field distribution is performed using a custom written genetic 

algorithm, with the entry direction of electrodes specified as an input parameter. The 

relative electrode positions are optimized, along with the applied voltages (Županič et al. 

2008). The constraints of the electric pulse generator (electroporator) are also taken into 

account. The resulting treatment plans have also been evaluated for robustness to variations 

in electrode positions and voltages (Kos et al. 2010). The computation of temperature rise 

can also be included if treatment plans for N-TIRE are desired (Županič and Miklavčič 

2011).  

Conclusion 

Because a well-defined target (i.e. tumor or other pathological tissue) needs to be 

determined when planning electroporation-based treatments (such as ECT or N-TIRE) of 

deep-seated tumors (Pavliha et al. 2012), and distribution of the electric field in biological 

tissue is the most important predictor of electroporation (Miklavcic et al. 2006; Miklavcic 

et al. 1998), clinicians and eventually patients can greatly benefit from the web-based 

treatment planning software we developed. Namely, the software allows generation of 

electroporation-based treatment plans without prior engineering knowledge and generates 

3D models based on patient images that are used for calculation and optimization of the 

electric field distribution during electroporation. Moreover, it is possible to import 

previously segmented cases, which allows historical evaluation of patients that were already 

treated as well as preparation of treatment plans for tissue types which are currently not 
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supported by the automatic segmentation algorithms but could also benefit from web-based 

treatment planning. Finally, the treatment plan is presented in a clearly understandable 

human readable form. Therefore, the web-based treatment planning software could 

contribute to faster advance of clinicians already practicing electroporation-based 

treatments of superficial tumor nodules towards treating deep-seated tumors, such as bone 

metastasis and soft-tissue sarcoma (Miklavčič et al. 2012) 

 

Acknowledgments 

This work was supported by the Slovenian Research Agency (ARRS). Research was 

conducted in the scope of the Electroporation in Biology and Medicine (EBAM) European 

Associated Laboratory (LEA). The authors thank dr. Robert Hudej from the Institute of 

Oncology, Ljubljana, for providing data that was used for preparing the treatment plan for 

N-TIRE of prostate cancer. 

 

References 

Agerholm-Larsen B, Iversen HK, Ibsen P, et al. (2011) Preclinical Validation of 

Electrochemotherapy as an Effective Treatment for Brain Tumors. Cancer Research 

71:3753–3762. doi: 10.1158/0008-5472.CAN-11-0451 

Aström M, Zrinzo LU, Tisch S, et al. (2009) Method for patient-specific finite element 

modeling and simulation of deep brain stimulation. Med Biol Eng Comput 47:21–

28. doi: 10.1007/s11517-008-0411-2 

Beichel R, Pock T, Janko C, et al. (2004) Liver segment approximation in CT data for 

surgical resection planning. 1435–1446. doi: 10.1117/12.535514 

Birkfellner W (2010) Applied Medical Image Processing: A Basic Course, Har/Com. 

Taylor & Francis 

Čorović S, Lacković I, Šuštaršič P, et al. (2013) Modeling of electric field distribution in 

tissues during electroporation. BioMedical Engineering Online in press. 



  SCIENTIFIC ARTICLES 

    75 

Daugimont L, Baron N, Vandermeulen G, et al. (2010) Hollow Microneedle Arrays for 

Intradermal Drug Delivery and DNA Electroporation. J Membrane Biol 236:117–

125. doi: 10.1007/s00232-010-9283-0 

Davalos R, Rubinsky B (2008) Temperature considerations during irreversible 

electroporation. International Journal of Heat and Mass Transfer 51:5617–5622. 

doi: 10.1016/j.ijheatmasstransfer.2008.04.046 

Edhemovic I, Gadzijev EM, Brecelj E, et al. (2011) Electrochemotherapy: A New 

Technological Approach in Treatment of Metastases in the Liver. Technol Cancer 

Res Treat 10:475–485. 

Fini M, Tschon M, Alberghini M, et al. (2011) Cell Electroporation in Bone Tissue. 

Clinical Aspects of Electroporation  

Frangi A, Niessen W, Vincken K, Viergever M (1998) Multiscale vessel enhancement 

filtering. In: Wells W, Colchester A, Delp S (eds) Medical Image Computing and 

Computer-Assisted Intervention. Springer-Verlag, Berlin, Germany, pp 130–137 

Garcia P, Pancotto T, Rossmeisl J, et al. (2011) Non-Thermal Irreversible Electroporation 

(N-TIRE) and Adjuvant Fractionated Radiotherapeutic Multimodal Therapy for 

Intracranial Malignant Glioma in a Canine Patient. Technology in Cancer 

Research & Treatment 73–83. 

Golberg A, Rubinsky B (2012) Towards Electroporation Based Treatment Planning 

Considering Electric Field Induced Muscle Contractions. Technology in Cancer 

Research & Treatment 11:189–201. 

Gusbeth C, Frey W, Volkmann H, et al. (2009) Pulsed Electric Field Treatment for 

Bacteria Reduction and Its Impact on Hospital Wastewater. Chemosphere 228–

233. 

Heller L, Heller R (2010) Electroporation Gene Therapy Preclinical and Clinical Trials for 

Melanoma. Current Gene Therapy 10:312–317. 

Heymann M, Degani A (2007) Formal Analysis and Automatic Generation of User 

Interfaces: Approach, Methodology, and an Algorithm. Human Factors 311–330. 



SCIENTIFIC ARTICLES   
   

76   

Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture 

thresholding using the entropy of the histogram. Computer Vision, Graphics, and 

Image Processing 29:140 –. doi: 10.1016/S0734-189X(85)90156-2 

Kos B, Zupanic A, Kotnik T, et al. (2010) Robustness of Treatment Planning for 

Electrochemotherapy of Deep-Seated Tumors. Journal of Membrane Biology 

236:147–153. doi: 10.1007/s00232-010-9274-1 

Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of Transmembrane Voltage 

Induced by Applied Electric Fields - a Theoretical Analysis. Bioelectrochemistry 

and Bioenergetics 43:285–291. 

Kotnik T, Kramar P, Pucihar G, et al. (2012) Cell membrane electroporation- Part 1: The 

phenomenon. IEEE Electrical Insulation Magazine 28:14 –23. doi: 

10.1109/MEI.2012.6268438 

Linnert M, Iversen H, Gehl J (2012) Multiple brain metastases - current management and 

perspectives for treatment with electrochemotherapy. Radiology and Oncology 

2012:1–8. doi: 10.2478/v10019-012-0042-y 

Mahmood F, Gehl J (2011) Optimizing clinical performance and geometrical robustness of 

a new electrode device for intracranial tumor electroporation. Bioelectrochemistry 

81:10–16. doi: 10.1016/j.bioelechem.2010.12.002 

Mali B, Jarm T, Snoj M, et al. (2013) Antitumor effectiveness of electrochemotherapy: A 

systematic review and meta-analysis. European Journal of Surgical Oncology 

(EJSO) 39:4 – 16. doi: 10.1016/j.ejso.2012.08.016 

Maor E, Ivorra A, Rubinsky B (2009) Non Thermal Irreversible Electroporation: Novel 

Technology for Vascular Smooth Muscle Cells Ablation. PLOS One. doi: 

10.1371/journal.pone.0004757 

Marty M, Sersa G, Garbay J, et al. (2006) Electrochemotherapy - An easy, highly effective 

and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE 

(European Standard Operating Procedures of Electrochemotherapy) study. Eur J 

Cancer Suppl 4:3–13. doi: 10.1016/j.ejcsup.2006.08.002 



  SCIENTIFIC ARTICLES 

    77 

Miklavcic D (2012) Network for Development of Electroporation-Based Technologies and 

Treatments: COST TD1104. Journal of Membrane Biology 245:591–598. doi: 

10.1007/s00232-012-9493-8 

Miklavcic D, Beravs K, Semrov D, et al. (1998) The Importance of Electric Field 

Distribution for Effective in Vivo Electroporation of Tissues. Biophysical Journal 

2152–2158. 

Miklavcic D, Corovic S, Pucihar G, Pavselj N (2006) Importance of Tumour Coverage by 

Sufficiently High Local Electric Field for Effective Electrochemotherapy. EJC 

Supplements 4:45–51. 

Miklavcic D, Snoj M, Zupanic A, et al. (2010) Towards Treatment Planning and 

Treatment of Deep-Seated Solid Tumors by Electrochemotherapy. Biomedical 

Engineering Online 9:-. 

Miklavčič D, Serša G, Brecelj E, et al. (2012) Electrochemotherapy: technological 

advancements for efficient electroporation-based treatment of internal tumors. 

Medical & Biological Engineering & Computing 50:1213–1225. doi: 

10.1007/s11517-012-0991-8 

Mir L, Gehl J, Sersa G, et al. (2006) Standard operating procedures of the 

electrochemotherapy: Instructions for the use of bleomycin or cisplatin 

administered either systemically or locally and electric pulses delivered by the 

Cliniporator (TM) by means of invasive or non-invasive electrodes. EJC 

Supplements 4:14–25. doi: 10.1016/j.ejcsup.2006.08.003 

Mir LM, Orlowski S, Belehradek J, Paoletti C (1991) Elecrochemotherapy potentiation of 

antitumor effect of bleomycin by local electric pulses. European Journal of Cancer 

27:68–72. 

National Electrical Manufacturers Association (2009) Digital Imaging and 

Communications in Medicine (DICOM).  

Neal, II RE, Rossmeisl, Jr. JH, Garcia PA, et al. (2011) Successful Treatment of a Large 

Soft Tissue Sarcoma With Irreversible Electroporation. Journal of Clinical 

Oncology 29:E372–E377. doi: 10.1200/JCO.2010.33.0902 



SCIENTIFIC ARTICLES   
   

78   

Olsen D, Bruland O, Davis B (2000) Telemedicine in radiotherapy treatment planning: 

requirements and applications. Radiotherapy and Oncology 54:255–259. doi: 

10.1016/S0167-8140(99)00185-1 

De Pasquale F, Stander J (2009) A Multi-Scale Template Method for Shape Detection 

with Bio-Medical Applications. Pattern Analysis and Applications 179–192. 

Paulides MM, Bakker JF, Linthorst M, et al. (2010) The clinical feasibility of deep 

hyperthermia treatment in the head and neck: new challenges for positioning and 

temperature measurement. Physics in Medicine and Biology 55:2465. 

Pavliha D, Kos B, Županič A, et al. (2012) Patient-specific treatment planning of 

electrochemotherapy: Procedure design and possible pitfalls. Bioelectrochemistry 

87:265–273. 

Pavselj N, Bregar Z, Cukjati D, et al. (2005) The Course of Tissue Permeabilization 

Studied on a Mathematical Model of a Subcutaneous Tumor in Small Animals. 

IEEE Trans Biomed Eng 52:1373–1381. doi: 10.1109/TBME.2005.851524 

Sel D, Cukjati D, Batiuskaite D, et al. (2005) Sequential finite element model of tissue 

electropermeabilization. IEEE Transactions on Biomedical Engineering 52:816–

827. doi: 10.1109/TBME.2005.845212 

Sersa G, Miklavcic D, Cemazar M, et al. (2008) Electrochemotherapy in Treatment of 

Tumours. EJSO 34:232–240. 

Serša G, Miklavčič D (2008) Electrochemotherapy of Tumors. Journal of Visualized 

Experiments 22. 

Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food 

preservation. Chemical Engineering and Processing 46:537–546. doi: 

10.1016/j.cep.2006.07.011 

Ušaj M, Trontelj K, Miklavčič D, Kandušer M (2010) Cell–Cell Electrofusion: 

Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse 

Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells. J Membrane Biol 

236:107–116. doi: 10.1007/s00232-010-9272-3 

 
 



  SCIENTIFIC ARTICLES 

    79 

Zheng Y, Grossman M, Awate SP, Gee JC (2009) Automatic Correction of Intensity 

Nonuniformity from Sparseness of Gradient Distribution in Medical Images. 

Proceedings of the 12th International Conference on Medical Image Computing 

and Computer-Assisted Intervention: Part II. Springer-Verlag, Berlin, Heidelberg, 

pp 852–859 

Zupanic A, Kos B, Miklavcic D (2012) Treatment planning of electroporation-based 

medical interventions: electrochemotherapy, gene electrotransfer and irreversible 

electroporation. Physics in Medicine and Biology 57:5425–5440. doi: 

10.1088/0031-9155/57/17/5425 

Županič A, Čorović S, Miklavčič D (2008) Optimization of Electrode Position and Electric 

Pulse Amplitude in Electrochemotherapy. Radiology and Oncology 42:93–101. 

Županič A, Miklavčič D (2009) Optimization and Numerical Modeling in Irreversible 

Electroporation Treatment Planning. Irreversible Electroporation. Springer, Berlin, 

pp 203–222 

Županič A, Miklavčič D (2011) Tissue heating during tumor ablation with irreversible 

electroporation. Electrotechnical Review 42–47. 

 

  



   

80   

  



 

    81 

DISCUSSION 

ELECTROCHEMOTHERAPY TREATMENT PLANNING PROCEDURE 

In Article 1, we described the development of the electrochemotherapy (ECT) treatment 

planning procedure that can provide clinicians with the information needed to effectively 

perform electroporation-based treatments in the clinical setting. Because following standard 

operating procedures (Mir et al., 2006) cannot ensure successful treatment when treating 

deep-seated tumors with ECT, it is important to prepare a patient-specific treatment plan 

(Pavliha et al., 2012). However, treatment planning of ECT is an interdisciplinary 

procedure that requires knowledge from the fields of biomedicine, engineering and 

oncology. Therefore, in order to make ECT treatment planning available to clinicians, the 

procedure needs to be simplified from the user’s point of view. Hence, the required user 

interaction to perform treatment planning should be minimal (Heymann and Degani, 

2007; Stupak et al., 2010). 

In order for clinicians to adopt ECT treatment planning procedure, the latter has been 

designed based on the radiotherapy example (Lecchi et al., 2008) where treatment planning 

is well-established and not only known, but also accepted to be of paramount importance 

for successful treatment (Tannock et al., 2005). We exposed parallelisms to radiotherapy 

when conceptually designing ECT treatment planning, and although the established 

protocols and algorithms have been intended specifically for ECT of deep-seated tumors, 

they are general enough to be useful for all electroporation-based therapies given that 

application-specific details are added to the procedure. Since electric field distribution is the 

most important predictor of successful electroporation (Miklavčič et al., 2006, 1998), 

electric field distribution-specific parameters (i.e. the objective function) need to be 

modified in order to use the treatment planning procedures for other electroporation-based 

therapies than ECT (Županič et al., 2010). Namely, when planning ECT the tumor is 

required to be covered with a sufficiently strong electric field (above 460 V/cm, i.e. the 

reversible threshold) minimizing also damage to healthy tissue due to irreversible 

electroporation (i.e. the irreversible threshold). Moreover, voltage and electrode 

position/geometry with respect to the distance between electrodes need to be such as to 
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ensure adequate electric field strengths (i.e. above reversible and below irreversible 

thresholds). Similarly, the resulting electric field strength in the target tissue is required to 

exceed the irreversible threshold when planning non-thermal irreversible electroporation 

(N-TIRE) for ablation to be successful. It is however important to avoid tissue damage due 

to thermal effects (i.e. Joule heating) (Davalos et al., 2003). All these issues demonstrate 

that, given that all the required parameters are adequately chosen and application-specific 

requirements are met, the described treatment planning procedure can be indeed used for 

every electroporation-based treatment (Županič et al., 2012).  

LIVER SEGMENTATION ALGORITHMS AND VALIDATION 

In order to simplify the treatment planning procedure, algorithms for automatic liver 

segmentation were developed. As part of automatic segmentation, some preprocessing 

techniques were implemented; since e.g. debiasing is required when processing MRI images 

but developing of such algorithms can represent a demanding task (Likar et al., 2001), 

publicly available code was used to perform this procedure (Zheng et al., 2009). In Article 

2, three possible automatic liver segmentation algorithms were presented and evaluated by 

optimizing their functioning for accurate liver segmentation. Optimization was done on a 

dataset consisting of seven patients that were manually segmented by the radiologist and 

used as a training set. Furthermore, validation was performed using an additional 

radiologist dataset of four patients that were previously not included in the training set. 

Development of automatic segmentation algorithm for accurate three-dimensional liver 

model generation is a challenging task: the variability of the input data (i.e. liver in the 

patient’s medical images) namely makes segmentation difficult to perform. To explore 

different segmentation possibilities, three algorithms were implemented and further 

improved by developing and applying a postprocessor.  

We first evaluated the region growing algorithm that, although not being fully automatic 

due to the need for a manual initial seed placement, can provide satisfactory segmentation 

results (Mancas et al., 2005). The main drawback of the region growing algorithm, i.e. 

segment leakage, was eliminated by the postprocessor as the final step of liver segmentation. 

Although considered overly simplistic, region growing provided best similarity results to the 



  DISCUSSION 
 

    83 

radiologist dataset, as presented in Table 2 of Article 2.  Moreover, the algorithm could be 

upgraded to a fully automatic algorithm by programmatically defining the initial seed 

location, e.g. based on determining the expected intensity of the target segment on the 

referential slice (as defined in chapter 2.1.3. of Article 2) using another segmentation 

algorithm, e.g. adaptive threshold. In that way, the implemented region growing algorithm 

could be upgraded to perform automatically, i.e. without the need of user interaction. 

As second we evaluated the adaptive threshold segmentation algorithm that was developed 

because of its intuitive approach; the algorithm is based on the physical property of the 

organ subject to segmentation, i.e. continuity of the tissue on two neighboring slices. 

Namely, due to tissue continuity the difference between segments on two neighboring slices 

is expected to be minimal. Therefore, the developed algorithm processes the currently-

segmented slice by a thresholding function with an adaptive (i.e. changing in every 

iteration) threshold to the previous already-segmented slice; the global maximum of 

similarity (i.e. normalized cross-correlation) of the neighboring slices determines the finally 

used threshold, and segmentation proceeds to the next slice. Adaptive threshold, like the 

region growing algorithm, can also be exposed to segment leakage since it is intensity-

based. Therefore, the use of the postprocessor proved to be necessary, since otherwise some 

organs (e.g. the spleen, the heart, the kidneys) may be detected as liver segments due to 

their similar intensity ranges to the liver (Massoptier and Casciaro, 2008). The initialization 

of the adaptive threshold algorithm is another important step: since the initial slice has no 

predecessors which it could be compared to, a set of presets (i.e. approximate shapes of the 

target organ’s segment that is expected to be detected in the initial slice) is used for the first 

comparison instead. Although only six liver presets were available in our implementation of 

the adaptive threshold algorithm, the initial segment was properly detected on every case 

during optimization and validation procedures. 

We evaluated active contours, sometimes referred to as the snakes algorithm (Kass et al., 

1987), as the third segmentation algorithm; our implementation of the active contours 

algorithm is based on the Gradient Vector Flow (GVF) (Xu and Prince, 1998). Active 

contours algorithm has the benefit of not being susceptible to intensity-related anomalies, 

such as intensity inhomogeneity. However, the active (i.e. deformable) contour, that finally 
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determines the segment, is attracted to edges including those of the structures within the 

target organ. Therefore, it is imperative to properly initialize the active contour, i.e. place it 

in the near vicinity of the target segment, since otherwise it may get attracted by edges of 

internal organ structures (e.g. blood vessels, metastases, hemangioma etc.) instead of 

external organ edges. Besides, soft transitions of the tissue between two neighboring slices 

also represent a drawback of the active contours algorithm, because its current 

implementation is based on the Gradient Vector Flow (GVF) map which is dependent on 

the edges detected in the images. Namely, soft transitions of the tissue prevent proper edge 

detection in the images, which further prevents proper GVF map generation; finally, due to 

improper GVF map the active contours do not align on the external organ edges since 

edges were not properly detected. Therefore, active contours are aligned to edges of 

surrounding organs instead, which causes improper segment detection.  

All the described issues demonstrate that despite of the used algorithm, liver segmentation 

for electrochemotherapy (ECT) is a complex procedure. Fortunately, highest accuracy of 

the relevant tissue (e.g. liver) is not required for electric field distribution calculation of 

ECT since from the modeling point of view, the liver only represents the medium that 

surrounds the target tissue, i.e. the tumor. Moreover, during surgery the liver tends to 

deform and, therefore, the organ may differ from the model geometry in the treatment plan 

(Clements et al., 2011). It is however important the tumor being accurately segmented. 

Although the ECT treatment planning we established is based on radiotherapy treatment 

planning, there is a certain radiotherapy-specific feature related to tumor segmentation that 

should not be replicated when planning ECT. Namely, in radiotherapy treatment 

planning, the tumor (i.e. target tissue for the radiation beam) is segmented using a safety 

margin (i.e. some healthy tissue around the tumor is exposed to the radiation beam as well). 

The safety margin is used to assure complete beam coverage of the target tissue. 

Nevertheless, in ECT treatment planning such increase of tumor volume is not acceptable 

because the tumor tissue’s conductivity significantly differs from the conductivity of the 

healthy tissue (Kos et al., 2010) and calculations of the electric field distribution would be 

improper if the tumor was oversegmented. Hence the need for accurate tumor 

segmentation. Currently, tumor segmentation is performed manually (i.e. by manual 
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contour delineation) because automatic tumor segmentation is a challenging task due to 

variability of shape, size and location of tumors (Barbosa et al., 2012). However, we are 

considering implementing an algorithm for segmentation of internal structures (i.e. residing 

within the liver which is achieved by masking the input data using the obtained liver 

segments) that detects line-like and blob-like structures and identifies them as blood vessels 

and possible tumor objects, respectively. The multi-scale algorithm (Frangi et al., 1998) 

described in Article 3 serves as the base for blood vessel and tumor segmentation; since 

tumor segmentation is a demanding procedure (Ahmed et al., 2011; Foo et al., 2011; 

Wang, 2011) and because high accuracy is required, manual validation of the generated 

segments is necessary at the end of the segmentation procedure, which enables the end-user 

(i.e. the clinician) to approve the results obtained. Such manual validation gives the 

clinician the possibility of not only determining which blob-like structures are tumors and 

performing manual error correction of segmentation, but also taking liability for the 

generated segmentation results, which is of great importance for clinical use of 

electroporation-based therapies’ treatment planning. 

An important step of developing treatment planning software with embedded automatic 

segmentation algorithms is validation of the developed procedures. Namely, the 

implemented segmentation algorithms need to provide accurate results (i.e. correctly 

detected tissue segments) which designates the requirement for algorithm validation. Before 

validation of the algorithms, their optimization was performed using a set of seven patient 

cases manually segmented by the radiologist (i.e. the training set). The training set allowed 

optimization of algorithm parameters: deviation of the intensity that is included in the 

region (region growing), initial coefficient that determines targeted size of the initial 

segment (adaptive threshold), and energy contribution coefficients (active contours). The 

automatically generated (i.e. using segmentation algorithms) results were compared to data 

from the training set using normalized cross-correlation (i.e. similarity) on a slice basis. 

Optimization results presented in Table 1 of Article 2 demonstrated that our 

implementation of region growing was the most optimization-prone algorithm evaluated, 

since it could be optimized to achieve 89.2% median similarity (79.8% mean similarity 

with 12.7% standard deviation) to the training set. Adaptive threshold algorithm could be 
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optimized to achieve 87.6% median similarity (67.6% mean similarity with 12.8% 

standard deviation), and our implementation of the active contours algorithm 86.4% 

median similarity (68.8% mean similarity with 8.6% standard deviation), which shows that 

despite being more sophisticated, these two algorithms achieved lower optimization results 

(i.e. similarity to the training set) than region growing. Region growing allowed good 

optimization possibilities because the parameter that influences what intensity range is 

included in the segment (i.e. deviation of the intensity) was subject to optimization. 

Adaptive threshold algorithm lacks changeable parameters that influence segmentation, as it 

mainly relies on the tissue continuity feature and in this implementation, no other 

parameters could be set. An improvement could be made by replacing the threshold 

function of the adaptive threshold algorithm with a bandpass function (i.e. instead of 

including intensities that exceed the threshold, intensities between two boundary thresholds 

would be included instead), which would enable more parameters (lower and upper 

boundaries, and width of the included intensity range) of the adaptive threshold algorithm 

to be optimized. Finally, four parameters of the active contours algorithm were optimized 

(i.e. energy contributions of the deformable contour: elasticity, curvature, GVF magnitude 

and GVF direction). Although such optimization should provide good fit to the training 

set, it is rather difficult to accurately influence the movement of the active contour since the 

movement is mostly relying on GVF-related parameters. Namely, the active contour aligns 

itself mainly to edges in the image (e.g. external organ edges). If the edges of the target 

tissue are improperly detected after preprocessing (e.g. the target tissue does not have clearly 

detectable edges), the movement of the active contour will be unforeseeable and 

optimization is trivial. 

After optimization, a final validation step of the algorithms was performed. The validation 

of the algorithms was done on four patient cases manually segmented by a radiologist that 

were not part of the training set (i.e. validation data set). Like optimization, validation was 

also done by comparing similarities of the automatically generated results by the 

segmentation algorithms to the data from the validation data set using normalized cross-

correlation on a slice basis. The total similarity (i.e. similarity of a patient case, comprising 

of similarities of each slice) was determined using mean or median similarity of all slice 
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similarities within a case. Two data representations (i.e. mean and median) were presented 

because during optimization and validation, many slices with 0% similarity were detected. 

Zero-similarity is detected when comparing two slices where an automatically generated 

slice or the manually (i.e. by the radiologist) segmented slice does not contain any segments 

while the other does. Therefore, if only a few pixels are detected by the segmentation 

algorithm but are not identified by the radiologist (or vice versa), the result of such slice 

comparison will be 0% similarity. Hence, such slices significantly impact the overall 

outcome of the assessment and using the mean value of all slices, the success of a 

segmentation algorithm may not be reflected enough. Therefore, besides the mean 

similarity, the median similarity of the slices of a case is presented as well.   

INTEGRATED SOFTWARE WITH GRAPHICAL USER INTERFACE 

To facilitate electrochemotherapy (ECT) treatment planning, the procedure that includes 

algorithms for automatic segmentation was developed as web-based treatment planning 

software that is operated by the end-user (i.e. clinician) using a graphical user interface 

(GUI). The GUI is rendered at the client-side (i.e. in the user’s web browser), while all the 

processing that involves 3D model generation and electric field distribution calculation and 

optimization is executed on the treatment planning server. Such implementation permits 

that the client computer is not loaded by the processing, and also allows centralization of all 

generated treatment plans. The latter is of great importance because it permits generating a 

database of not only segmented but also validated patient cases of various tissues; namely, 

since the software allows manual validation of the segmentation algorithms at the end of 

the procedure (i.e. the end-user manually corrects segmentation outcome) the data can 

serve as a new training set that keeps expanding with the use of the software. Finally, the 

training set could be used by the software to automatically learn segmentation and optimize 

its own functioning. 

Because of its modular design, the ECT treatment planning software also allows new 

segmentation algorithms to be included subsequently. Namely, the software currently 

allows segmentation of liver (using three possible liver segmentation algorithms: region 

growing, adaptive threshold, and active contours) and bone (using fixed thresholding). 
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Moreover, it is possible to import pre-segmented DICOM images which include segment 

structures in a standard DICOM file. In that way, segmentation can be done using external 

software (or archived medical images can be reused for evaluation) and ECT treatment 

planning software is, then, only used for post-segmentation procedures (i.e. virtual 

electrode insertion and electric field distribution calculation). These data could also become 

part of a new training set that could allow development of new algorithms for segmenting 

tissue that has not been included in automatic segmentation procedure. Also, loading 

already-segmenting cases allows historical evaluation of patients that were already treated 

with the purpose of correlating the calculated coverage of the tumor with the electric field 

to the treatment outcome. The latter is of great importance for improving electroporation-

based treatments in clinical practice.  
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CONCLUSION 

In this doctoral dissertation, we establish treatment planning procedure for 

electrochemotherapy (ECT) of deep-seated tumors. Furthermore, because the developed 

procedures are primarily based on knowledge about the electroporation phenomenon, they 

are not ECT-specific and are, therefore, applicable to other electroporation-based 

treatments, e.g. non-thermal irreversible electroporation (N-TIRE) for tumor ablation. 

Treatment planning allows users of electroporation-based treatments (i.e. clinicians) better 

insight on the importance of accurate treatment planning due to direct correlation of tumor 

coverage with sufficiently high electric field strength to the treatment outcome. Moreover, 

the possibility of generating treatment plans for cases that were previously segmented and 

already treated allows historical evaluation of performed treatments, which is of great 

importance for further improvements of performing electroporation-based treatments in 

the clinical setting. 

Finally, development of easy-to-use web-based treatment planning software with integrated 

algorithms for automatic tissue segmentation greatly improves the availability of ECT or 

N-TIRE treatment planning procedures to end-users (i.e. clinicians) who can use the 

software to prepare accurate treatment plans remotely and without the need of engineers. 

Consequently, more treatments can be performed and better treatment outcome can be 

expected, which at the end results in improved patients’ quality of life.    
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ORIGINAL CONTRIBUTIONS 

Based on results in this doctoral dissertation I claim for the recognition of the following 

original scientific contributions to the research area:  

 
DESIGN OF PATIENT-SPECIFIC ELECTROCHEMOTHERAPY TREATMENT 
PLANNING PROCEDURES FOR TREATING DEEP-SEATED TUMORS 

We designed patient-specific treatment planning for electrochemotherapy of deep-seated 

tumors; treatment planning procedures are based on radiotherapy treatment planning. The 

designed treatment planning procedures rely on patient medical images processing and 

tissue segmentation:  relevant organ (e.g. liver), pathological tissue (i.e. tumor), and other 

relevant tissue (e.g. blood vessels). The developed procedures allow efficient 

electrochemotherapy treatment of deep-seated tumors.  

 
OPTIMIZATION AND VALIDATION OF AUTOMATIC LIVER 
SEGMENTATION ALGORITHMS FOR PATIENT-SPECIFIC 
ELECTROCHEMOTHERAPY TREATMENT PLANNING 

We developed algorithms for automatic liver segmentation from the medical images; 

segmentation algorithms are used for patient-specific electrochemotherapy treatment 

planning-purposes. The developed algorithms (region growing, adaptive threshold, and 

active contours) are validated using radiological expert opinion using seven models for 

functioning optimization and additional four models for final validation of the optimized 

algorithms. 

 
DEVELOPMENT OF INTEGRATED SOFTWARE FOR PATIENT-SPECIFIC 
ELECTROCHEMOTHERAPY TREATMENT PLANNING  

We developed integrated software that embeds all the procedures that are required for 

electrochemotherapy treatment planning: interface for patient’s medical images import, 

algorithms for automatic segmentation, interface for virtual electrode insertion, algorithms 

for electric field distribution in tissue, and interface for treatment plan presentation. 



ORIGINAL CONTRIBUTIONS  

92   

Currently, the software allows segmentation of two tissue types: liver (with blood vessels) 

and bones. Due to its modular design, inclusion of segmentation algorithms for other tissue 

types is possible. The software is controlled using easy-to-use graphical user interface that is 

developed as a web application which, therefore, allows remote treatment planning (i.e. 

telemedicine). 
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