
Introduction

Electrochemotherapy (ECT) is an effec-

tive local tumor therapy performed by 

the administration of chemotherapeutic 

drugs followed by the application of local 

high-voltage electric pulses.1, 2 The electric 

pulses cause transient structural changes 

(electroporation) of tumor cell membranes 

and thus increase the entrance of the chem-

otherapeutic drugs. This potentiates the 

chemotherapeutic effect and lowers the re-

quired drug dose.3 Numerous studies have 

demonstrated ECT to be a very efficient 

treatment in various tumor types; in recent 

years, it has become a treatment of choice 

for cutaneous and subcutaneous tumor 

nodules of different histologies.4-9 

Two conditions have to be met for ECT to 

be efficient: 1) a sufficient amount of chem-

otherapeutic drug has to be present in the 
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target tissue, when the electric pulses are 

applied; 2) the electric pulses have to revers-

ibly electroporate the entire tumor volume, 

which means that the electric field estab-

lished by the pulses should be of a magni-

tude between the reversible and irreversible 

electroporation threshold (Erev < E < Eirrev). 

The optimal ECT protocol should thus de-

stroy all tumor cells, while minimising elec-

trically induced damage to healthy tissue 

due to irreversible electroporation. This can 

be achieved by choosing the most suitable 

electrode configuration and the lowest am-

plitude of electric pulses that guarantees 

whole tumor electroporation.10,11 Finding 

the optimum treatment parameters is often 

difficult, since it requires a complete un-

derstanding of the treatment mechanisms. 

Since the electric field is one of the most 

important factors in ECT efficiency, mode-

ling the electric field distribution is not only 

necessary for understanding the treatment, 

but is also a crucial step towards treatment 

planning.12-14 This study presents the first 

use of an ECT optimization algorithm on 

several different tumor geometries.

The goal of our study was to optimize the 

electric field distribution in four different 

3D subcutaneous tumor models (Figure 1) 

by optimizing the electrode configuration 

around the tumor tissue and the amplitude 

of the electric pulses for each of the four 

different electrode geometries that have 

been used in clinics in recent years (Figure 

2).1,15 Optimization was performed using 

a combination of finite element numerical 

modeling and a genetic algorithm. All tu-

mor/electrode cases were optimized for the 

following parameters: distances between 

electrodes (Figure 2), depth of electrode 

insertion and amplitude of electric pulses. 

Our optimization algorithm successfully 

found the best parameters in all cases and 

with some further improvement it could be 

a useful tool in clinical ECT treatment plan-

ning as well as in treatment planning of 

other electroporation based treatments.16-18
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Figure 1. 3D subcutaneous tumor geometries. a) 

sphere (r1-3 = 2 mm); b) ellipsoid positioned deeper in 

tissue (r1 =  4 mm, r2,3 = 2 mm); c) ellipsoid (r1,2 = 2 mm, 

r3 = 8 mm); d) realistic tumor geometry from medical 

images (r1 = 3.8 mm, r2 = 2.4 mm, r3 = 2.6 mm).

Figure 2. Electrode geometries and polarities: a) three 

needle electrode pairs (3 pairs); b) four needle electrode 

pairs (4 pairs); c) hexagonal needle electrode array with 

two electrodes on positive potential, two on negative 

and two neutral (2x2); d) hexagonal needle electrode 

array with three electrodes on positive potential and 

three on negative potential (3x3). Distances between 

electrodes d1-3 were among the optimized parameters 

in our optimization process. Diameter of all electrodes 

was 0.7 mm.   
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Materials and methods
Tissue properties and model geometry 

Each model of a subcutaneous tumor con-

sisted of two tissues: the target/tumor tis-

sue and the surrounding healthy tissue. 

Four different tumor geometries were cho-

sen, a small sphere, an ellipsoid positioned 

deeper in the tissue, an elongated ellipsoid 

and a realistic tumor geometry taken from 

a previous study and scaled for better com-

parison with the other tumor geometries 

(Figure 1).14 All tissues were considered 

isotropic and homogeneous, the assigned 

conductivity values being 0.4 S/m for the 

tumors and 0.2 S/m for the healthy tissue. 

These values describe the conductivity at 

the end of the electroporation process.19 

The values were chosen in accordance with 

previous measurements of tumor and tissue 

conductivity and models of subcutaneous 

tumor and skin electroporation.13,16,20 The 

electric field distribution was calculated for 

three different electrode geometries: two 

different parallel needle electrode arrays 

(Figure 2a,b) and a hexagonal electrode ar-

ray with two different electrode polarities 

(Figure 2c,d). These geometries and polari-

ties were chosen because they are frequent-

ly used in ECT research and therapy. 

Numerical modeling

Numerical calculations were performed 

with the commercial finite element soft-

ware package COMSOL Multiphysics 3.4 

(COMSOL AB, Sweden). The electric field 

distribution in the tissue, caused by the 

electroporative pulse, was determined by 

solving the Laplace equation for static elec-

tric currents:

,

where σ and φ are the conductivity of the 

tissue and electric potential, respectively. 

The boundary conditions used in our cal-

culations were a constant potential on 

the surface of the electrodes and electric 

insulation on all outer boundaries of the 

model. 

The electric field distributions obtained 

in our models were displayed in the range 

from the reversible Erev = 400 V/cm to the 

irreversible electroporation threshold value 

Eirrev = 900 V/cm (Figure 3). These values 

were taken from a previously published 

study, in which we estimated them by com-

paring in vivo measurements and numerical 

modeling of electroporation of a subcutane-

ous tumor.13,21

Optimization

The genetic algorithm22 was written in 

MATLAB 2007a (Mathworks, USA) and 

was run together with the finite element 

model using a link between MATLAB and 

COMSOL. The initial population of pos-

sible solutions was generated randomly, 

taking into account the following model 

constraints: range of distances between 

electrodes (d1: 0.7-4.0 mm; d2: 3.4-5.0 mm; 

d3: 1.3-5.0 mm), range of depths of elec-

trode insertion into tissue (-1.0-5.0 mm 

below the tumor) and range of amplitudes 

of electric pulses (1-1200 V). These con-

straints were chosen so that the calculation 

domain size, COMSOL meshing capabili-

ties and oncology experts’ demands for a 

safety margin23 when treating solid tumors, 

were all respected. Solutions for reproduc-

tion were selected proportionally to their 

fitness, according to the fitness function: 
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Figure 3. False color legend of Figs. 4, 5 indicating the 

degree of tissue permeabilization. The white region 

represents insufficiently permeabilized regions of 

tissue (E < Erev) and the patterned region represents 

irreversibly permabilized regions of tissue (E ≥ Eirrev).
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,

where F stands for fitness, VTrev and VTirrev 

stand for the tumor volume subjected to 

the local electric field above Erev and above 

Eirrev, and VHrev and VHirrev stand for the 

volume of healthy tissue subjected to the 

local electric field above Erev and above 

Eirrev, respectively. The weights in the fit-

ness function were set according to the im-

portance of the individual parameters for 

efficient ECT. Namely, VTrev is crucial for 

efficient ECT, so its weight is largest (100) 

in comparison to the weight of VHirrev (10), 

which was in turn larger than the weights 

of VHrev and VTirrev, since their significance 

for successful electrochemotherapy is still 

debated. Other weight values that kept a 

similar ratio gave similar results. The in-

teger 12 is present only to ensure that the 

fitness function is always positive. 

The selected solutions reproduced by 

cross-over or by mutation. The genetic al-

gorithm was terminated after 100 genera-

tions, when the fitness of the highest rank-

ing solution usually reached a plateau. The 

average computation time of the algorithm 

was two hours on a standard desktop PC 

(Windows XP, 3.0 GHz, 1 GB RAM). 

Results

The optimized parameters of electrochemo-

therapy (ECT) for all tumor/electrode cases 

are given in Table 1. The optimum distance 

Županič A et al. / Optimization of electroporation in electrochemotherapy

Table 1. Optimized distances between electrodes (d1-3), depth of electrode insertion below the tumor and amplitude 

of electric pulse (U) are given for all analyzed tumor models and electrode geometries. Qualities of individual 

optimized solutions are described by the calculated values of total electric current through tissue (I), fraction of 

reversibly permeabilised target tissue (VTrev/VT) and normalized volume of damaged healthy tissue (VHirrev/Vsph). 
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between electrodes in a parallel row (d1) 

was similar for all tumor models, except, 

due to its size, for the elongated ellipsoid 

tumor geometry, for which successful elec-

troporation required the electrodes to be 

further apart. The electrodes were as close 

to each other as possible considering the 

parameter constraints, which guaranteed 

that the electric field distribution in the 

target tissue was homogeneous as possible 

(comparison of Figure 4b and Figure 4c). 

The optimum distance between electrode 

rows (d2) was also similar for all tumor 

geometries and as small as possible, the 

reason being that small inter-electrode dis-

tances required a lower voltage to ensure 

electroporation, thus also requiring less 

electric energy and causing less damage to 

tissue. The same is true for the distance be-

tween electrodes in a hexagonal array (d3), 

the reason this time being a combination of 

both homogeneity of the local electric field 

and lower required voltage. In contrast, 

the optimum depth of electrode insertion 

varied with the tumor and electrode geom-

etry. Nevertheless, the optimum position 

for the electrodes was in all cases below 

the tumor. The optimum electric pulse 

amplitude did not differ much in cases of 

a spherical tumor and ellipsoid tumor deep 

in tissue but in other tumor geometries, 

parallel electrode arrays required consider-

ably lower amplitudes than their hexagonal 

counterparts. 

We compared the quality of the opti-

mized solution in terms of total electric 

current through the tissue and extent of 

healthy tissue damage (Table 1 – VHirrev/

Vsph). We normalized the volumes of ir-

reversibly electroporated tumor with the 

volume of a spherical tumor better to 

compare the amount of tissue damage be-

tween individual treatment cases. Parallel 

electrode arrays gave better results for all 

four tumor geometries. Three needle pairs 

always resulted in less total electric cur-

rent. However, four needle pairs produced 

a more homogeneous field, which, in com-

bination, caused three needle pairs to be 

a slightly better choice (less healthy tissue 

damage) for the spherical and the realistic 
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Figure 4. Electric field distribution for the optimized 

models of subcutaneous tumors is shown. In each 

case, only the best electrode configuration is given: 

a) three needle pairs for the spherical tumor; b) four 

needle pairs for the ellipsoid; c) four needle pairs for 

the ellipsoid deeper in tissue; d) three needle pairs for 

the realistic tumor. The electric distribution is shown 

in two central perpendicular planes: YZ and XY both 

passing through the center of the tumor. Corresponding 

values of  parameters are given in Table 1. 
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tumor geometry and four needle pairs to be 

slightly better for the other two geometries. 

The best electrode configurations for all tu-

mor geometries and the corresponding elec-

tric field distributions are shown in Figure 

4. Hexagonal electrodes caused consider-

ably more healthy tissue damage (E > Eirrev) 

than parallel electrodes, which can be seen 

in Figure 5 for the realistic tumor geometry. 

The 3x3 hexagonal electrode array caused 

more healthy tissue damage than the other 

three geometries and also required the high-

est total electric current, mostly because 

the electric current ran between the closest 

positive and negative electrodes, instead of 

through the target tissue (Figure 5). 

Discussion

The aim of our study was to optimize the 

electrode configuration around the target 

tissue and electric pulse amplitude for ECT 

of four 3D models of subcutaneous tumors 

treated with four different needle electrode 

array geometries. In all 16 cases, the optimi-

zation resulted in reversible electroporation 

of the entire tumor (Table 1: VTrev/VT = 1), 

which was the parameter with the highest 

weight in our fitness function. At the same 

time, the damage to healthy tissue was 

minimal. When treating a spherical tumor, 

only a volume of healthy tissue equal to the 

tumor volume was irreversibly electropo-

rated (Table 1: VHirrev/Vsph). Treatment of 

larger tumors caused more healthy tissue 

damage. 

The usefulness of numerical modeling 

in predicting electroporation outcomes has 

already been demonstrated.14,15,19,24-26 We 

examined the adequacy for ECT of needle 

electrode array geometries by calculating 

the values of total electric current through 

the model (must be as low as possible to 

avoid nerve stimulation27 and not exceed the 

capacities of the electric pulse generator28) 

and volumes of reversibly and irreversibly 

electroporated tumor tissue and healthy tis-

sue. Three-needle electrode pairs were best 

for the spherical and the realistic tumor ge-

ometry; they required the lowest total elec-

tric current and caused only a small volume 

of healthy tissue to be irreversibly electro-

porated (healthy tissue damage) (Figure 4). 

Županič A et al. / Optimization of electroporation in electrochemotherapy

Figure 5. Electric field distribution for the optimized 

model of the realistic tumor with a) three needle pairs; 

b) four needle pairs; c) 3x3 hexagonal needle electrode 

array; d) 2x2x2 hexagonal needle electrode array 

is shown. The electric distribution is shown in two 

central perpendicular planes: YZ and XY both passing 

through the center of the tumor. Corresponding 

values of parameters are given in Table 1.
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Four-needle electrode pairs caused the least 

healthy tissue damage in the other tumor 

geometries, but they required more electric 

current (Figure 4), confirming previous re-

sults of our group - more electrodes mean 

a more invasive procedure, higher required 

current and lower required voltage to obtain 

the same target tissue coverage. Parallel elec-

trode arrays gave much better results than 

the 2x2 and 3x3 hexagonal needle electrode 

arrays, mostly because they induced a much 

more homogeneous field and, consequently, 

a lower electric current density. 

Our work built on a previous study by 

our group that optimized the distance and 

voltage between electrodes for a realistic 

brain tumor (the same tumor geometry that 

we used in a scaled form in this study).14 

Our present study took optimization one 

step further by optimizing for four differ-

ent electrode geometries and for two ad-

ditional parameters, i.e. distance between 

electrodes in a row and depth of electrode 

insertion, which lead to perhaps the most 

important practical result. It is very difficult 

to guess the best possible insertion depth, 

since it depends in complex ways on tumor 

geometry, electrode geometry, electropora-

tion thresholds and the conductivities of 

tumor and healthy tissue. However, based 

on our results, electrodes should always be 

inserted deeper than the deepest part of the 

tumor (Table 1). 

We chose a genetic algorithm as the opti-

mization method, since different linear and 

non-linear constraints, such as the technical 

limitations of the high-voltage electric pulse 

generator (maximum output voltage and 

current) can be easily taken into account. 

A genetic algorithm also allows optimiza-

tion of a large number of continuous, dis-

crete and categorical parameters, e.g. type of 

electrodes and can give as a result many so-

lutions of similar quality, which can never-

theless be topologically very different. This 

gives the treating physician more alterna-

tives for the positioning of electrodes, which 

can be very valuable if some of them are not 

easy to access. The major drawback of a ge-

netic algorithm is the relatively long compu-

tation time. However, since it can be consid-

erably shortened by using a more powerful 

computer or by making the optimization pa-

rameters discrete instead of continuous, we 

do not consider this to be a significant issue 

and believe that this approach is well suited 

to the problem being addressed. 

Even though our algorithm gives good 

results, several challenges remain to be ad-

dressed before it can be used for treatment 

planning of ECT. We must determine the 

most appropriate level of complexity of our 

numerical models. In this study, we did not 

take into account changes to tissue conduc-

tivity due to electroporation, the possibility 

of several consecutive pulses being used, of 

changing the electric field orientation or of 

moving the electrodes during treatment of 

a larger tumor; all of which options must 

be considered in the future.13,15,25 Another 

crucial development would be an algorithm 

that would convert medical images of the 

treatment area into 3D structures ready to 

import into numerical modeling software. 

In conclusion, we demonstrated that nu-

merical modeling and optimization can be 

efficiently combined to control the extent 

of tissue electroporation in ECT and to pro-

duce the optimum electrode configuration 

and amplitude of electric pulses. Our algo-

rithm is a step towards effective treatment 

planning, not only in clinical ECT, but also 

in other electroporation based treatments, 

such as gene electrotransfer, transdermal 

drug delivery and irreversible tumor abla-

tion.16-18   
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